Javier Jr Retana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5987210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Post-fire recovery of ant communities in Submediterranean Pinus nigra forests. Ecography, 2006, 29, 231-239.	2.1	426
2	A new look at water transport regulation in plants. New Phytologist, 2014, 204, 105-115.	3.5	404
3	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	3.0	233
4	DIRECT REGENERATION IS NOT THE ONLY RESPONSE OF MEDITERRANEAN FORESTS TO LARGE FIRES. Ecology, 2004, 85, 716-729.	1.5	227
5	Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Functional Ecology, 1998, 12, 45-55.	1.7	220
6	Thermal Disruption of Transitive Hierarchies in Mediterranean Ant Communities. Journal of Animal Ecology, 1997, 66, 363.	1.3	215
7	The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia, 1998, 117, 404-412.	0.9	196
8	Constraints and trade-offs in Mediterranean plant communities: The case of holm oak-Aleppo pine forests. Botanical Review, The, 2000, 66, 119-149.	1.7	183
9	Flowering phenology, floral traits and pollinator composition in a herbaceous Mediterranean plant community. Oecologia, 1997, 109, 583-591.	0.9	154
10	Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience, 2002, 9, 89-97.	0.6	132
11	MASTING MEDIATED BY SUMMER DROUGHT REDUCES ACORN PREDATION IN MEDITERRANEAN OAK FORESTS. Ecology, 2008, 89, 805-817.	1.5	130
12	Understanding deforestation in montane and lowland forests of the Colombian Andes. Regional Environmental Change, 2011, 11, 693-705.	1.4	125
13	Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in <scp>S</scp> panish forests. Global Change Biology, 2012, 18, 1028-1041.	4.2	123
14	Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biological Conservation, 2013, 159, 73-79.	1.9	121
15	<i>GlobalAnts</i> : a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 2017, 10, 5-20.	1.4	119
16	Spatial and temporal variations in the activity patterns of Mediterranean ant communities. Ecoscience, 1997, 4, 269-278.	0.6	113
17	Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980–2010). Global Environmental Change, 2017, 46, 139-147.	3.6	113
18	Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here?. Global Ecology and Biogeography, 2015, 24, 25-43.	2.7	111

#	Article	IF	CITATIONS
19	Title is missing!. Plant Ecology, 1998, 138, 17-26.	0.7	110
20	Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Annals of Botany, 2016, 118, 249-257.	1.4	104
21	Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. , 2011, 21, 1162-1172.		101
22	National and regional determinants of tropical deforestation in Colombia. Regional Environmental Change, 2013, 13, 1181-1193.	1.4	99
23	Title is missing!. Plant Ecology, 1999, 145, 91-99.	0.7	95
24	Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence. Forest Ecology and Management, 2018, 407, 16-22.	1.4	95
25	Foraging behavior and pollinating effectiveness of Osmia cornuta (Hymenoptera: Megachilidae) and Apis mellifera (Hymenoptera: Apidae) on ?Comice? pear. Apidologie, 2004, 35, 575-585.	0.9	92
26	Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. Journal of Ecology, 2010, 98, 1462-1475.	1.9	92
27	Are conservation strategies effective in avoiding the deforestation of the Colombian Guyana Shield?. Biological Conservation, 2009, 142, 1411-1419.	1.9	84
28	Topography and forest composition affecting the variability in fire severity and post-fire regeneration occurring after a large fire in the Mediterranean basin. International Journal of Wildland Fire, 2004, 13, 209.	1.0	83
29	Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). Forest Ecology and Management, 2007, 242, 391-397.	1.4	82
30	Post-fire recovery of Mediterranean ground ant communities follows vegetation and dryness gradients. Journal of Biogeography, 2006, 33, 1246-1258.	1.4	80
31	Patterns of Forest Decline and Regeneration Across Scots Pine Populations. Ecosystems, 2013, 16, 323-335.	1.6	80
32	Dual role of harvesting ants as seed predators and dispersers of a non-myrmechorous Mediterranean perennial herb. Oikos, 2004, 105, 377-385.	1.2	78
33	Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants. PeerJ, 2015, 3, e1241.	0.9	78
34	Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees. Forest Ecology and Management, 2005, 206, 109-117.	1.4	74
35	Alternative strategies by thermophilic ants to cope with extreme heat: individual versus colony level traits. Oikos, 2000, 89, 155-163.	1.2	70
36	Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography, 2017, 40, 448-457.	2.1	70

#	Article	IF	CITATIONS
37	Response of ant functional composition to fire. Ecography, 2013, 36, 1182-1192.	2.1	69
38	Links between Worker Polymorphism and Thermal Biology in a Thermophilic Ant Species. Oikos, 1997, 78, 467.	1.2	68
39	ENVIRONMENTAL AND HUMAN FACTORS INFLUENCING FIRE TRENDS IN ENSO AND NON-ENSO YEARS IN TROPICAL MEXICO. , 2003, 13, 1177-1192.		68
40	An economic and ecological multi-criteria evaluation of reforestation methods to recover burned Pinus nigra forests in NE Spain. Forest Ecology and Management, 2003, 180, 185-198.	1.4	67
41	Resprouting patterns after fire and response to stool cleaning of two coexisting Mediterranean oaks with contrasting leaf habits on two different sites. Forest Ecology and Management, 2003, 179, 401-414.	1.4	65
42	Ant functional responses along environmental gradients. Journal of Animal Ecology, 2014, 83, 1398-1408.	1.3	65
43	Factors influencing the pattern of fire severities in a large wildfire under extreme meteorological conditions in the Mediterranean basin. International Journal of Wildland Fire, 2009, 18, 755.	1.0	63
44	Postâ€fire regeneration of Mediterranean plant communities at a regional scale is dependent on vegetation type and dryness. Journal of Vegetation Science, 2007, 18, 111-122.	1.1	62
45	Factors influencing the formation of unburned forest islands within the perimeter of a large forest fire. Forest Ecology and Management, 2009, 258, 71-80.	1.4	62
46	Functional trait variation along environmental gradients in temperate and Mediterranean trees. Global Ecology and Biogeography, 2015, 24, 1377-1389.	2.7	62
47	Extreme Fire Severity Patterns in Topographic, Convective and Wind-Driven Historical Wildfires of Mediterranean Pine Forests. PLoS ONE, 2014, 9, e85127.	1.1	60
48	Mid-term successional patterns after fire of mixed pine–oak forests in NE Spain. Acta Oecologica, 2002, 23, 405-411.	0.5	59
49	Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 2011, 151, 279-289.	1.9	59
50	Early reduction of post-fire recruitment ofPinus nigraby post-dispersal seed predation in different time-since-fire habitats. Ecography, 2004, 27, 449-458.	2.1	58
51	Distinctive life traits and distribution along environmental gradients of dominant and subordinate Mediterranean ant species. Oecologia, 2012, 170, 489-500.	0.9	58
52	Landscape Dynamics in Northwestern Amazonia: An Assessment of Pastures, Fire and Illicit Crops as Drivers of Tropical Deforestation. PLoS ONE, 2013, 8, e54310.	1.1	57
53	Predicting the Recovery of Pinus halepensis and Quercus ilex Forests after a Large Wildfire in Northeastern Spain. Plant Ecology, 2005, 180, 47-56.	0.7	56
54	Intraspecific variability in functional traits matters: case study of Scots pine. Oecologia, 2014, 175, 1337-1348.	0.9	55

#	Article	IF	CITATIONS
55	Acorn crop size and pre-dispersal predation determine inter-specific differences in the recruitment of co-occurring oaks. Oecologia, 2009, 161, 559-568.	0.9	51
56	Interspecific differences in sapling performance with respect to light and aridity gradients in Mediterranean pine–oak forests: implications for species coexistence. Canadian Journal of Forest Research, 2011, 41, 1432-1444.	0.8	51
57	Anthropogenicâ€driven rapid shifts in tree distribution lead to increased dominance of broadleaf species. Global Change Biology, 2016, 22, 3984-3995.	4.2	51
58	Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests. PLoS ONE, 2014, 9, e94906.	1.1	47
59	Prey Size Reverses the Outcome of Interference Interactions of Scavenger Ants. Oikos, 1998, 82, 99.	1.2	46
60	The positive carbon stocks–biodiversity relationship in forests: coâ€occurrence and drivers across five subclimates. Ecological Applications, 2018, 28, 1481-1493.	1.8	45
61	Characterizing forest vulnerability and risk to climate hange hazards. Frontiers in Ecology and the Environment, 2021, 19, 126-133.	1.9	45
62	Seedling Recruitment. Ecological Studies, 1999, , 89-103.	0.4	45
63	Patterns and drivers of regeneration of tree species in forests of peninsular Spain. Journal of Biogeography, 2013, 40, 1252-1265.	1.4	44
64	Spatial patterns, temporal variability, and the role of multi-nest colonies in a monogynous Spanish desert ant. Ecological Entomology, 2002, 27, 7-15.	1.1	43
65	Climate Change Could Negate Positive Tree Diversity Effects on Forest Productivity: A Study Across Five Climate Types in Spain and Canada. Ecosystems, 2018, 21, 960-970.	1.6	43
66	Impacts of climate change on water resources in the Mediterranean Basin: a case study in Catalonia, Spain. Hydrological Sciences Journal, 2015, 60, 2132-2147.	1.2	42
67	Uncoupling the effects of shade and food resources of vegetation on Mediterranean ants: an experimental approach at the community level. Ecography, 2007, 30, 161-172.	2.1	40
68	Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain. Biogeosciences, 2013, 10, 8353-8361.	1.3	40
69	Lack of regeneration and climatic vulnerability to fire of Scots pine may induce vegetation shifts at the southern edge of its distribution. Journal of Biogeography, 2012, 39, 488-496.	1.4	39
70	The ecological benefits of larger colony size may promote polygyny in ants. Journal of Evolutionary Biology, 2014, 27, 2856-2863.	0.8	39
71	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	4.2	39
72	Effect of site quality and shading on sprouting patterns of holm oak coppices. Forest Ecology and Management, 2004, 188, 39-49.	1.4	38

#	Article	IF	CITATIONS
73	A model of the recruitment of Pinus nigra from unburned edges after large wildfires. Ecological Modelling, 2006, 197, 405-417.	1.2	37
74	Worker Size Polymorphism Conditioning Size Matching in Two Sympatric Seed-Harvesting Ants. Oikos, 1994, 71, 261.	1.2	35
75	Spatial Patterns and Predictors of Forest Carbon Stocks in Western Mediterranean. Ecosystems, 2012, 15, 1258-1270.	1.6	35
76	National ecosystems services priorities for planning carbon and water resource management in Colombia. Land Use Policy, 2015, 42, 609-618.	2.5	35
77	Limitation of the recruitment of <i>Pinus nigra</i> in a gradient of post-fire environmental conditions. Ecoscience, 2004, 11, 296-304.	0.6	34
78	Effectiveness of protected areas in the Colombian Andes: deforestation, fire and land-use changes. Regional Environmental Change, 2013, 13, 423-435.	1.4	34
79	Forest diversity plays a key role in determining the stand carbon stocks of Mexican forests. Forest Ecology and Management, 2018, 415-416, 160-171.	1.4	34
80	The flowering pattern of the perennial herb Lobularia maritima: anÂunusual case in the Mediterranean basin. Acta Oecologica, 2001, 22, 209-217.	0.5	33
81	Forest management conditioning ground ant community structure and composition in temperate conifer forests in the Pyrenees Mountains. Forest Ecology and Management, 2009, 258, 51-59.	1.4	33
82	Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. Forest Ecology and Management, 2012, 270, 282-290.	1.4	33
83	Fire-induced loss of the world's most biodiverse forests in Latin America. Science Advances, 2021, 7, .	4.7	33
84	Social Organization of <i>Cataglyphis cursor</i> Ant Colonies (Hymenoptera, Formicidae): Interâ€; and Intraspecific Comparisons. Ethology, 1990, 84, 105-122.	0.5	32
85	Fire reduces Pinus pinea distribution in the northeastern Iberian Peninsula. Ecoscience, 2007, 14, 23-30.	0.6	31
86	Ant Community Structure in Citrus Orchards in the Mediterranean Basin: Impoverishment as a Consequence of Habitat Homogeneity. Environmental Entomology, 2009, 38, 317-324.	0.7	31
87	Are protected areas preserving ecosystem services and biodiversity? Insights from Mediterranean forests and shrublands. Landscape Ecology, 2019, 34, 2307-2321.	1.9	31
88	Resprouting Dynamics. Ecological Studies, 1999, , 61-73.	0.4	31
89		O.5	29
90	Uncoupling the Effects of Seed Predation and Seed Dispersal by Granivorous Ants on Plant Population Dynamics. PLoS ONE, 2012, 7, e42869.	1.1	29

#	Article	IF	CITATIONS
91	Synergies Between Forest Biomass Extraction for Bioenergy and Fire Suppression in Mediterranean Ecosystems: Insights from a Storyline-and-Simulation Approach. Ecosystems, 2016, 19, 786-802.	1.6	29
92	Interference interactions and nest usurpation between two subordinate ant species. Oecologia, 1998, 113, 577.	0.9	27
93	AN EXTENDED FLOWERING AND FRUITING SEASON HAS FEW DEMOGRAPHIC EFFECTS IN A MEDITERRANEAN PERENNIAL HERB. Ecology, 2002, 83, 1991-2004.	1.5	26
94	The role of disturbance in the coâ€existence of the evergreen Quercus ilex and the deciduous Quercus cerrioides. Journal of Vegetation Science, 2004, 15, 423-430.	1.1	26
95	Differences in biomass partitioning, leaf nitrogen content, and water use efficiency (l´13C) result in similar performance of seedlings of two Mediterranean oaks with contrasting leaf habit. Ecoscience, 2005, 12, 447-454.	0.6	25
96	Future variability of droughts in three Mediterranean catchments. Natural Hazards, 2013, 69, 1405-1421.	1.6	25
97	Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences, 2017, 14, 2755-2765.	1.3	25
98	Dynamics, Patterns and Causes of Fires in Northwestern Amazonia. PLoS ONE, 2012, 7, e35288.	1.1	24
99	Low forest productivity associated with increasing droughtâ€ŧolerant species is compensated by an increase in droughtâ€ŧolerance richness. Global Change Biology, 2021, 27, 2113-2127.	4.2	24
100	The role of disturbance in the co-existence of the evergreen Quercus ilex and the deciduous Quercus cerrioides. Journal of Vegetation Science, 2004, 15, 423.	1.1	24
101	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	1.0	23
102	A multidimensional functional trait analysis of resource exploitation in European ants. Ecology, 2015, 96, 2781-2793.	1.5	23
103	Seedling bank dynamics in managed holm oak (Quercus ilex) forests. Annals of Forest Science, 2001, 58, 843-852.	0.8	22
104	Nest-moving by the polydomous ant Cataglyphis iberica. Journal of Ethology, 2008, 26, 119-126.	0.4	22
105	Thermal Characterization of European Ant Communities Along Thermal Gradients and Its Implications for Community Resilience to Temperature Variability. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	22
106	The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE, 2020, 15, e0228625.	1.1	22
107	National and regional relationships of carbon storage and tropical biodiversity. Biological Conservation, 2015, 192, 378-386.	1.9	20
108	Agonistic relationships among sympatric mediterranean ant species (Hymenoptera: Formicidae). Journal of Insect Behavior, 1994, 8, 365-380.	0.4	19

#	Article	IF	CITATIONS
109	Variation in reproduction and growth in declining Scots pine populations. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 111-120.	1.1	19
110	Fire and species range in Mediterranean landscapes: an experimental comparison of seed and seedling performance among Centaurea taxa. Journal of Biogeography, 2002, 29, 135-146.	1.4	18
111	Habitat determinants of abundance, structure and composition of flying Hymenoptera communities in mountain old-growth forests. Insect Conservation and Diversity, 2011, 4, 200-211.	1.4	18
112	Fuel types and crown fire potential in Pinus halepensis forests. European Journal of Forest Research, 2012, 131, 463-474.	1.1	18
113	Edge Influence on Diversity of Orchids in Andean Cloud Forests. Forests, 2016, 7, 63.	0.9	16
114	Response to natural and simulated browsing of two Mediterranean oaks with contrasting leaf habit after a wildfire. Annals of Forest Science, 2006, 63, 441-447.	0.8	15
115	Changes of dominant ground beetles in black pine forests with fire severity and successional age. Ecoscience, 2008, 15, 442-452.	0.6	15
116	Post-dispersal seed predation in Pinus halepensis and consequences on seedling establishment after fire. International Journal of Wildland Fire, 2008, 17, 407.	1.0	15
117	Assessing the Risk of Losing Forest Ecosystem Services Due to Wildfires. Ecosystems, 2021, 24, 1687-1701.	1.6	14
118	Relevance of soil seed bank and seed rain to immediate seed supply after a large wildfire. International Journal of Wildland Fire, 2012, 21, 449.	1.0	14
119	Regeneration patterns in Mexican pine-oak forests. Forest Ecosystems, 2019, 6, .	1.3	14
120	Land-cover changes in and around a National Park in a mountain landscape in the Pyrenees. Regional Environmental Change, 2011, 11, 349-358.	1.4	13
121	Patterns and Trends of Forest Loss in the Colombian Guyana. Biotropica, 2012, 44, 123-132.	0.8	13
122	Seed ecology of a Mediterranean perennial herb with an exceptionally extended flowering and fruiting season. Botanical Journal of the Linnean Society, 2003, 142, 273-280.	0.8	12
123	Variables That Influence Changes in Fire Severity and Their Relationship with Changes Between Surface and Crown Fires in a Wind-Driven Wildfire. Forest Science, 2013, 59, 139-150.	0.5	11
124	Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 2021, 12, e03347.	1.0	10
125	Postâ€fire invasion and subsequent extinction of <i><scp>C</scp>onyza</i> spp. in <scp>M</scp> editerranean forests is mostly explained by local factors. Weed Research, 2013, 53, 470-478.	0.8	9
126	Post-Fire Management of Non-Serotinous Pine Forests. Managing Forest Ecosystems, 2012, , 151-170.	0.4	9

#	Article	IF	CITATIONS
127	Behavioral repertoire of the antCataglyphis cursor (Hymenoptera: Formicidae): Is it possible to elaborate a standard specific one?. Journal of Insect Behavior, 1991, 4, 139-155.	0.4	8
128	An Extended Flowering and Fruiting Season Has Few Demographic Effects in a Mediterranean Perennial Herb. Ecology, 2002, 83, 1991.	1.5	8
129	Composition and habitat use of small mammals in old-growth mountain forests. Journal of Natural History, 2014, 48, 481-494.	0.2	8
130	A quantitative assessment of mid-term risks of global change on forests in Western Mediterranean Europe. Regional Environmental Change, 2019, 19, 819-831.	1.4	5
131	Post-fire regeneration of Mediterranean plant communities at a regional scale is dependent on vegetation type and dryness. , 2007, 18, 111.		4
132	Projecting the distribution and abundance of Mediterranean tree species under climate change: a demographic approach. Journal of Plant Ecology, 0, , rtw081.	1.2	2
133	The Positive Carbon Stocks-Biodiversity Relationship in Forests: Co-Occurrence and Drivers Across Five SubClimates. Bulletin of the Ecological Society of America, 2018, 99, e01424.	0.2	2
134	Recent dynamics of pine and oak forests in Mexico. European Journal of Forest Research, 2020, 139, 179-187.	1.1	2