Yonggao Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5987060/publications.pdf

Version: 2024-02-01

114	5,771	41	72
papers	citations	h-index	g-index
119	119	119	6358 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	CO ₂ treatment enables non-hazardous, reliable, and efficacious recovery of spent Li(Ni _{0.5} Co _{0.2} Mn _{0.3})O ₂ cathodes. Green Chemistry, 2022, 24, 779-789.	4.6	22
2	Ultrafine SnO ₂ /Sn Nanoparticles Embedded into an <i>In Situ</i> Generated Meso-/Macroporous Carbon Matrix with a Tunable Pore Size. Langmuir, 2022, 38, 1689-1697.	1.6	2
3	Controls of oxygen-partial pressure to accelerate the electrochemical activation in Co-free Li-rich layered oxide cathodes. Journal of Power Sources, 2022, 523, 231022.	4.0	14
4	Less is more: tiny amounts of insoluble multi-functional nanoporous additives play a big role in lithium secondary batteries. Journal of Materials Chemistry A, 2022, 10, 8047-8058.	5.2	5
5	Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion. Nature Communications, 2022, 13, 2090.	5.8	99
6	Enhanced rate performance of lithium-ion battery anodes using a cobalt-incorporated carbon conductive agent. Inorganic Chemistry Frontiers, 2022, 9, 3484-3493.	3.0	2
7	<i>In Situ</i> Synthesis and Dual Functionalization of Nano Silicon Enabled by a Semisolid Lithium Rechargeable Flow Battery. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28748-28759.	4.0	3
8	Usefulness of uselessness: Teamwork of wide temperature electrolyte enables LFP/Li cells from -40 \hat{A}° C to 140 \hat{A}° C. Electrochimica Acta, 2022, 425, 140698.	2.6	3
9	Synergistic Effects of Ni ²⁺ and Mn ³⁺ on the Electrochemical Activation of Li ₂ MnO ₃ in Co-Free and Ni-Poor Li-Rich Layered Cathodes. ACS Applied Energy Materials, 2022, 5, 9079-9089.	2.5	7
10	Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility. Energy Storage Materials, 2021, 35, 388-399.	9.5	42
11	Regeneration of degraded Li-rich layered oxide materials through heat treatment-induced transition metal reordering. Energy Storage Materials, 2021, 35, 99-107.	9.5	27
12	High Pressure Effect on Structural and Electrochemical Properties of Anionic Redox-Based Lithium Transition Metal Oxides. Matter, 2021, 4, 164-181.	5.0	15
13	Impact of CO ₂ activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes. Nanoscale Advances, 2021, 3, 1942-1953.	2,2	9
14	SnO ₂ /Sn/Carbon nanohybrid lithiumâ€ion battery anode with high reversible capacity and excellent cyclic stability. Nano Select, 2021, 2, 642-653.	1.9	10
15	All annealing-free solution-processed highly flexible organic solar cells. Journal of Materials Chemistry A, 2021, 9, 5425-5433.	5.2	30
16	From \hat{a}^{2} 0 \hat{A}^{6} 0 to 150 \hat{A}^{6} 0: a lithium secondary battery with a wide temperature window obtained <i>i</i> via <i>i</i> manipulated competitive decomposition in electrolyte solution. Journal of Materials Chemistry A, 2021, 9, 9307-9318.	5.2	40
17	Porous silicon derived from 130Ânm Stöber silica as lithiumâ€ion battery anode. Nano Select, 2021, 2, 1554-1565.	1.9	0
18	Continuous fast pyrolysis synthesis of TiO ₂ /C nanohybrid lithiumâ€ion battery anode. Nano Select, 2021, 2, 1770-1778.	1.9	1

#	Article	IF	Citations
19	Sufficient Oxygen Redox Activation against Voltage Decay in Li-Rich Layered Oxide Cathode Materials. , 2021, 3, 433-441.		11
20	Si/Cu/C Nanohybrid Lithium-lon Battery Anode with <i>in Situ</i> Incorporation of Nonagglomerated Super-Small Copper Nanoparticles Based on Epoxy Resin. Energy & Energy & 2021, 35, 6250-6264.	2.5	5
21	Cocktail therapy towards high temperature/high voltage lithium metal battery via solvation sheath structure tuning. Energy Storage Materials, 2021, 38, 599-608.	9.5	53
22	A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. Environmental Technology and Innovation, 2021, 23, 101569.	3.0	29
23	Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides. Journal of Power Sources, 2021, 503, 230048.	4.0	20
24	Flexible poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene)-based gel polymer electrolyte for high-performance lithium-ion batteries. RSC Advances, 2021, 11, 11943-11951.	1.7	27
25	A composite surface configuration towards improving cycling stability of Li-rich layered oxide materials. Journal of Materials Chemistry A, 2021, 9, 24426-24437.	5.2	17
26	Si/SiOC/Carbon Lithiumâ€lon Battery Negative Electrode with Multiple Buffer Media Derived from Crossâ€Linked Dimethacrylate and Poly (dimethyl siloxane). ChemistrySelect, 2021, 6, 10348-10354.	0.7	1
27	Carbon-emcoating architecture boosts lithium storage of Nb2O5. Science China Materials, 2021, 64, 1071-1086.	3.5	7
28	Structural insights into composition design of Li-rich layered cathode materials for high-energy rechargeable battery. Materials Today, 2021, 51, 15-26.	8.3	60
29	Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57107-57117.	4.0	23
30	Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43785-43797.	4.0	24
31	Boosted efficiency of conductive metal oxide-free pervoskite solar cells using poly(3-(4-methylamincarboxylbutyl)thiophene) buffer layers. Journal Physics D: Applied Physics, 2020, 53, 284001.	1.3	6
32	Metastability and Reversibility of Anionic Redox-Based Cathode for High-Energy Rechargeable Batteries. Cell Reports Physical Science, 2020, 1, 100028.	2.8	37
33	Microporous Binder for the Silicon-Based Lithium-lon Battery Anode with Exceptional Rate Capability and Improved Cyclic Performance. Langmuir, 2020, 36, 2003-2011.	1.6	22
34	Vacuumâ€Free, Allâ€Solution, and Allâ€Air Processed Organic Photovoltaics with over 11% Efficiency and Promoted Stability Using Layerâ€by‣ayer Codoped Polymeric Electrodes. Solar Rrl, 2020, 4, 1900543.	3.1	19
35	In Situ Incorporation of Super‧mall Metallic High Capacity Nanoparticles and Mesoporous Structures for Highâ€Performance TiO ₂ /SnO ₂ /Sn/Carbon Nanohybrid Lithiumâ€lon Battery Anodes. Energy Technology, 2020, 8, 2000034.	1.8	4
36	Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Materials, 2019, 16, 220-227.	9.5	144

#	Article	IF	Citations
37	Dental Resin Monomer Enables Unique NbO ₂ /Carbon Lithiumâ€lon Battery Negative Electrode with Exceptional Performance. Advanced Functional Materials, 2019, 29, 1904961.	7.8	26
38	PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Advanced Science, 2019, 6, 1900813.	5 . 6	563
39	Confining Al–Li alloys between pre-constructed conductive buffers for advanced aluminum anodes. Chemical Communications, 2019, 55, 2352-2355.	2,2	6
40	MnO/Metal/Carbon Nanohybrid Lithium″on Battery Anode With Enhanced Electrochemical Performance: Universal Facile Scalable Synthesis and Fundamental Understanding. Advanced Materials Interfaces, 2019, 6, 1900335.	1.9	14
41	Synergistic effects from super-small sized TiO2 and SiOx nanoparticles within TiO2/SiOx/carbon nanohybrid lithium-ion battery anode. Ceramics International, 2019, 45, 14327-14337.	2.3	17
42	Role of Nickel Nanoparticles in Highâ€Performance TiO ₂ /Ni/Carbon Nanohybrid Lithium/Sodiumâ€lon Battery Anodes. Chemistry - an Asian Journal, 2019, 14, 1557-1569.	1.7	13
43	Double-helix-superstructure aqueous binder to boost excellent electrochemical performance in Li-rich layered oxide cathode. Journal of Power Sources, 2019, 420, 29-37.	4.0	32
44	Understanding the Discrepancy of Defect Kinetics on Anionic Redox in Lithium-Rich Cathode Oxides. ACS Applied Materials & Discrepance (2019, 11, 14023-14034).	4.0	30
45	Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite. Journal of Power Sources, 2019, 412, 93-104.	4.0	77
46	Ultrafast Heterogeneous Nucleation Enables a Hierarchical Surface Configuration of Lithiumâ€Rich Layered Oxide Cathode Material for Enhanced Electrochemical Performances. Advanced Materials Interfaces, 2018, 5, 1701465.	1.9	15
47	New perspective to understand the effect of electrochemical prelithiation behaviors on silicon monoxide. RSC Advances, 2018, 8, 14473-14478.	1.7	52
48	Lithium Bis(fluorosulfony)imideâ€Lithium Hexafluorophosphate Binaryâ€Salt Electrolytes for Lithiumâ€Ion Batteries: Aluminum Corrosion Behaviors and Electrochemical Properties. ChemistrySelect, 2018, 3, 1954-1960.	0.7	21
49	Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles. Journal of Materials Science and Technology, 2018, 34, 1902-1911.	5. 6	44
50	Identifying the chemical and structural irreversibility in LiNi _{0.8} – a model compound for classical layered intercalation. Journal of Materials Chemistry A, 2018, 6, 4189-4198.	5.2	48
51	Localized concentration reversal of lithium during intercalation into nanoparticles. Science Advances, 2018, 4, eaao2608.	4.7	50
52	Scalable in Situ Synthesis of Li ₄ Ti ₅ O ₁₂ /Carbon Nanohybrid with Supersmall Li ₄ Ti ₅ O ₁₂ Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2591-2602.	4.0	47
53	Si/Ag/C Nanohybrids with <i>in Situ</i> Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact. ACS Nano, 2018, 12, 861-875.	7.3	67
54	Scalable Synthesis of Hierarchical Antimony/Carbon Micro-/Nanohybrid Lithium/Sodium-Ion Battery Anodes Based on Dimethacrylate Monomer. Acta Metallurgica Sinica (English Letters), 2018, 31, 910-922.	1.5	15

#	Article	IF	Citations
55	A high-capacity P2 Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity. Journal of Power Sources, 2018, 395, 16-24.	4.0	133
56	Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nature Energy, 2018, 3, 641-647.	19.8	281
57	A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. Journal of Power Sources, 2018, 400, 449-456.	4.0	33
58	Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3661-3666.	4.0	50
59	Understanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-lon Batteries. Chemistry of Materials, 2017, 29, 908-915.	3.2	97
60	Structure-preserved 3D porous silicon/reduced graphene oxide materials as anodes for Li-ion batteries. RSC Advances, 2017, 7, 24305-24311.	1.7	23
61	Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO ₂ F ₂) additive. RSC Advances, 2017, 7, 26052-26059.	1.7	93
62	Characterization of Li-rich layered oxides by using transmission electron microscope. Green Energy and Environment, 2017, 2, 174-185.	4.7	7
63	Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from 0D Silica Nanoparticles. ACS Nano, 2017, 11, 889-899.	7.3	100
64	Oxidation Decomposition Mechanism of Fluoroethylene Carbonateâ€Based Electrolytes for Highâ€Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study. ChemistrySelect, 2017, 2, 7353-7361.	0.7	36
65	Stabilization effects of Al doping for enhanced cycling performances of Li-rich layered oxides. Ceramics International, 2017, 43, 13845-13852.	2.3	25
66	First observation of mutual energy transfer of Mn ⁴⁺ –Er ³⁺ via different excitation in Gd ₂ ZnTiO ₆ :Mn ⁴⁺ /Er ³⁺ phosphors. Journal of Materials Chemistry C, 2017, 5, 9098-9105.	2.7	57
67	Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. ACS Omega, 2017, 2, 8741-8750.	1.6	55
68	Synthesis and electrochemical performance of LiMnxFey(Vâ—¯)1-x-yPO4 cathode materials for lithium-ion batteries. Electrochimica Acta, 2016, 222, 1660-1667.	2.6	10
69	A 3D porous Li-rich cathode material with an in situ modified surface for high performance lithium ion batteries with reduced voltage decay. Journal of Materials Chemistry A, 2016, 4, 7230-7237.	5.2	46
70	Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13982-13992.	4.0	36
71	Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1-B O2 as cathode materials for lithium-ion batteries. Journal of Power Sources, 2016, 327, 273-280.	4.0	91
72	Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy, 2016, 27, 602-610.	8.2	126

#	Article	IF	Citations
73	Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nature Communications, 2016, 7, 12108.	5.8	531
74	Constructing durable carbon layer on LiMn0.8Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery. Electrochimica Acta, 2016, 191, 200-206.	2.6	39
75	Morphological Evolution of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size. ACS Applied Materials & Diterfaces, 2016, 8, 4661-4675.	4.0	212
76	Template-free synthesis of titania architectures with controlled morphology evolution. Journal of Materials Science, 2016, 51, 3941-3956.	1.7	8
77	Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids. Journal of Colloid and Interface Science, 2016, 469, 242-256.	5.0	5
78	Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery. Journal of Power Sources, 2016, 304, 293-300.	4.0	41
79	Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries. RSC Advances, 2016, 6, 12107-12113.	1.7	18
80	Advanced Materials for Lithium-Ion Batteries. Electrochemical Energy Storage and Conversion, 2015, , 79-142.	0.0	0
81	5â€Vâ€Class Electrolytes Based on Fluorinated Solvents for Liâ€Ion Batteries with Excellent Cyclability. ChemElectroChem, 2015, 2, 1707-1712.	1.7	41
82	Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Scientific Reports, 2015, 5, 8255.	1.6	80
83	Correlation between transition metal ion migration and the voltage ranges of electrochemical process for lithium-rich manganese-based material. Journal of Power Sources, 2015, 281, 7-10.	4.0	20
84	Composite membrane with ultra-thin ion exchangeable functional layer: a new separator choice for manganese-based cathode material in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7006-7013.	5.2	12
85	A comparative study on the oxidation state of lattice oxygen among Li _{1.14} Ni _{0.136} , Li ₂ MnO ₃ , Li ₂ MnO ₃ , LiNi _{0.5} and LiCoO ₂ for the	5.2	61
86	Eliminating Voltage Decay of Lithiumâ€Rich Li _{1.14} Mn _{0.54} Ni _{0.14} Co _{0.14} 0.14O ₂ Cathodes by Controlling the Electrochemical Process. Chemistry - A European Journal, 2015, 21, 7503-7510.	1.7	36
87	Facile Scalable Synthesis of TiO ₂ /Carbon Nanohybrids with Ultrasmall TiO ₂ Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Applied Materials & Diterfaces, 2015, 7, 24247-24255.	4.0	36
88	Electrochemical investigation of Li-excess layered oxide cathode materials/mesocarbon microbead in 18650 batteries. Electrochimica Acta, 2014, 123, 317-324.	2.6	15
89	Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries. Journal of Power Sources, 2014, 248, 246-252.	4.0	72
90	Green Facile Scalable Synthesis of Titania/Carbon Nanocomposites: New Use of Old Dental Resins. ACS Applied Materials & Dental Resins & Dental Resin	4.0	38

#	Article	IF	Citations
91	Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. Journal of Power Sources, 2014, 268, 683-691.	4.0	74
92	Temperature dependence of the initial coulombic efficiency in Li-rich layered Li[Li0.144Ni0.136Co0.136Mn0.544]O2 oxide for lithium-ions batteries. Journal of Power Sources, 2014, 268, 517-521.	4.0	35
93	Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9134.	5.2	86
94	Enhanced Electrochemical Performance with Surface Coating by Reactive Magnetron Sputtering on Lithium-Rich Layered Oxide Electrodes. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9185-9193.	4.0	98
95	One-step hydrothermal method synthesis of core–shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. Journal of Power Sources, 2014, 256, 66-71.	4.0	61
96	Simplified co-precipitation synthesis of spinel LiNi0.5Mn1.5O4 with improved physical and electrochemical performance. Journal of Alloys and Compounds, 2014, 598, 73-78.	2.8	28
97	Nano Structured LiMnPO4 cathode Materials with High Rate Capability. ECS Meeting Abstracts, 2014, , .	0.0	0
98	Synthesis and electrochemical performances of (1â^'x)LiMnPO4·xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries. Journal of Power Sources, 2013, 239, 144-150.	4.0	28
99	Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. Journal of Power Sources, 2013, 240, 530-535.	4.0	52
100	Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21144.	6.7	90
101	Microwave synthesis of spherical spinel LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 518, 68-73.	2.8	40
102	Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2–0.4LiNixMnyCo1â-'xâ-'yO2 cathode materials for lithium-ion batteries. Journal of Power Sources, 2012, 218, 128-133.	4.0	93
103	Microwave-irradiation synthesis of Li1.3NixCoyMn1â^'xâ^'yO2.4 cathode materials for lithium ion batteries. Electrochimica Acta, 2012, 80, 15-21.	2.6	26
104	The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1â‰ x â‰ 6 .7) cathode materials. Electrochimica Acta, 2012, 66, 61-66.	2.6	61
105	Synthesis and luminescence properties of BaWO4:Pr3+ microcrystal. Journal of Rare Earths, 2011, 29, 623-627.	2.5	17
106	Luminescence properties of monodispersed spherical BaWO4:Eu3+ microphosphors for white light-emitting diodes. Journal of Materials Science, 2011, 46, 1184-1189.	1.7	37
107	Photoluminescence properties of NaGd(WO4)2:Eu3+ nanocrystalline prepared by hydrothermal method. Current Applied Physics, 2011, 11, 503-507.	1.1	35
108	Photoluminescence properties of NaGd(MoO4)2:Eu3+ nanophosphors prepared by sol–gel method. Materials Research Bulletin, 2010, 45, 1145-1149.	2.7	44

#	ARTICLE	IF	CITATION
109	Synthesis and optimum luminescence of monodispersed spheres for BaWO4-based green phosphors with doping of Tb3+. Journal of Luminescence, 2010, 130, 762-766.	1.5	29
110	Photoluminescence properties of La2â^'xEux(WO4)3 red phosphor prepared by hydrothermal method. Physica B: Condensed Matter, 2010, 405, 3507-3511.	1.3	12
111	Hydrothermal synthesis and photoluminescence of SrWO4:Tb3+ novel green phosphor. Materials Research Bulletin, 2009, 44, 1863-1866.	2.7	50
112	Synthesis and luminescence properties of Tb3+:NaGd(WO4)2 novel green phosphors. Journal of Luminescence, 2009, 129, 668-671.	1.5	87
113	Photoluminescence green in microspheres of CaWO4:Tb3+ processed in conventional hydrothermal. Optical Materials, 2009, 31, 1513-1516.	1.7	53
114	Synthesis process and luminescence properties of Tm3+ in AWO4 (A=Ca, Sr, Ba) blue phosphors. Journal of Alloys and Compounds, 2009, 487, 758-762.	2.8	89