Steven J Hinder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5987037/publications.pdf

Version: 2024-02-01

257450 254184 1,917 45 24 43 citations g-index h-index papers 45 45 45 2771 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unravelling the Impact of Ta Doping on the Electronic and Structural Properties of Titania: A Combined Theoretical and Experimental Approach. Journal of Physical Chemistry C, 2022, 126, 2285-2297.	3.1	2
2	High-energy sodium-ion hybrid capacitors through nanograin-boundary-induced pseudocapacitance of Co3O4 nanorods. Journal of Energy Chemistry, 2022, 69, 338-346.	12.9	19
3	Unusual pseudocapacitive lithium-ion storage on defective Co ₃ O ₄ nanosheets. Nanotechnology, 2022, 33, 225403.	2.6	6
4	Exploring Different Binders for a LiFePO4 Battery, Battery Testing, Modeling and Simulations. Energies, 2022, 15, 2332.	3.1	13
5	Optimizing the oxide support composition in Pr-doped CeO2 towards highly active and selective Ni-based CO2 methanation catalysts. Journal of Energy Chemistry, 2022, 71, 547-561.	12.9	36
6	Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphene. Carbon, 2021, 171, 294-305.	10.3	27
7	Extremely pseudocapacitive interface engineered CoO@3D-NRGO hybrid anodes for high energy/ power density and ultralong life lithium-ion batteries. Carbon, 2021, 171, 869-881.	10.3	36
8	Continuous selective deoxygenation of palm oil for renewable diesel production over Ni catalysts supported on Al ₂ O ₃ and La ₂ O ₃ 2O ₃ 2O ₃ BC Advances, 2021, 11, 8569-8584.	3.6	21
9	Electrospun Fibres of Chitosan/PVP for the Effective Chemotherapeutic Drug Delivery of 5-Fluorouracil. Chemosensors, 2021, 9, 70.	3.6	40
10	Design Aspects of Doped CeO ₂ for Low-Temperature Catalytic CO Oxidation: Transient Kinetics and DFT Approach. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22391-22415.	8.0	70
11	Ni ₂ P Nanoparticles Embedded in Mesoporous SiO ₂ for Catalytic Hydrogenation of SO ₂ to Elemental S. ACS Applied Nano Materials, 2021, 4, 5665-5676.	5.0	14
12	Realization of High Energy Density Sodium-Ion Hybrid Capacitors through Interface Engineering of Pseudocapacitive 3D-CoO-NrGO Hybrid Anodes. ACS Applied Materials & Interfaces, 2021, 13, 27999-28009.	8.0	16
13	Metal-Free Phosphated Mesoporous SiO2 as Catalyst for the Low-Temperature Conversion of SO2 to H2S in Hydrogen. Nanomaterials, 2021, 11, 2440.	4.1	1
14	New Insights into Crystal Defects, Oxygen Vacancies, and Phase Transition of Ir-TiO2. Journal of Physical Chemistry C, 2021, 125, 23548-23560.	3.1	6
15	Magnetic Fe3O4–reduced graphene oxide composite decorated with Ag nanoparticles as electrochemical sensor and self-cleaning material for organic pollutants. Journal of Porous Materials, 2020, 27, 303-318.	2.6	15
16	Ternary Metal Chalcogenide Heterostructure (AgInS ₂ â€"TiO ₂) Nanocomposites for Visible Light Photocatalytic Applications. ACS Omega, 2020, 5, 406-421.	3.5	36
17	Structural Investigation of the Carbon Deposits on Ni/Al2O3 Catalyst Modified by CaO-MgO for the Biogas Dry Reforming Reaction. , 2020, 2, .		3
18	Indium-Doped TiO ₂ Photocatalysts with High-Temperature Anatase Stability. Journal of Physical Chemistry C, 2019, 123, 21083-21096.	3.1	69

#	Article	IF	CITATIONS
19	The Relationship between Reaction Temperature and Carbon Deposition on Nickel Catalysts Based on Al2O3, ZrO2 or SiO2 Supports during the Biogas Dry Reforming Reaction. Catalysts, 2019, 9, 676.	3.5	72
20	Ni Catalysts Based on Attapulgite for Hydrogen Production through the Glycerol Steam Reforming Reaction. Catalysts, 2019, 9, 650.	3.5	23
21	Nanostructured Fe-Ni Sulfide: A Multifunctional Material for Energy Generation and Storage. Catalysts, 2019, 9, 597.	3.5	21
22	Energy storage on demand: ultra-high-rate and high-energy-density inkjet-printed NiO micro-supercapacitors. Journal of Materials Chemistry A, 2019, 7, 21496-21506.	10.3	63
23	Ce–Sm– <i>x</i> Cu cost-efficient catalysts for H ₂ production through the glycerol steam reforming reaction. Sustainable Energy and Fuels, 2019, 3, 673-691.	4.9	34
24	Nickel Supported on AlCeO3 as a Highly Selective and Stable Catalyst for Hydrogen Production via the Glycerol Steam Reforming Reaction. Catalysts, 2019, 9, 411.	3.5	39
25	Investigation of Chemical and Physical Surface Changes of Thermally Conditioned Glass Fibres. Fibers, 2019, 7, 7.	4.0	4
26	Electrodeposited Nanostructured CoFe2O4 for Overall Water Splitting and Supercapacitor Applications. Catalysts, 2019, 9, 176.	3.5	65
27	Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Applied Sciences (Switzerland), 2018, 8, 2067.	2.5	149
28	A growth mechanism for carbon nanotubes using metal oxides as catalysts. Surface and Interface Analysis, 2018, 50, 734-743.	1.8	1
29	Design of Waterborne Nanoceria/Polymer Nanocomposite UV-Absorbing Coatings: Pickering versus Blended Particles. ACS Applied Nano Materials, 2018, 1, 3956-3968.	5.0	20
30	Antibacterial properties of F-doped ZnO visible light photocatalyst. Journal of Hazardous Materials, 2017, 324, 39-47.	12.4	187
31	Polymer brush lubrication of the silicon nitride–steel contact: a colloidal force microscopy study. RSC Advances, 2017, 7, 42667-42676.	3.6	3
32	Photocatalytic Properties of g-C3N4–TiO2 Heterojunctions under UV and Visible Light Conditions. Materials, 2016, 9, 286.	2.9	72
33	Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Scientific Reports, 2016, 6, 24770.	3.3	145
34	Pd Loaded TiO2 Nanotubes for the Effective Catalytic Reduction of p-Nitrophenol. Catalysis Letters, 2016, 146, 474-482.	2.6	28
35	Establishing template-induced polymorphic domains for API crystallisation: the case of carbamazepine. CrystEngComm, 2015, 17, 6384-6392.	2.6	33
36	Nickel azamacrocyclic complex activated persulphate based oxidative degradation of methyl orange: recovery and reuse of complex using adsorbents. RSC Advances, 2015, 5, 31716-31724.	3.6	5

STEVEN J HINDER

#	Article	IF	CITATIONS
37	Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visibleâ€Light Active Anatase Photocatalyst. Advanced Functional Materials, 2011, 21, 3744-3752.	14.9	306
38	SIMS fingerprint analysis on organic substrates. Surface and Interface Analysis, 2010, 42, 826-829.	1.8	31
39	A Systematic Study of the Effect of Silver on the Chelation of Formic Acid to a Titanium Precursor and the Resulting Effect on the Anatase to Rutile Transformation of TiO ₂ . Journal of Physical Chemistry C, 2010, 114, 13026-13034.	3.1	71
40	An investigation of the distribution of minor components in complex polymeric paint formulations using ToF-SIMS depth profiling. Surface and Interface Analysis, 2008, 40, 436-440.	1.8	6
41	Interfacial studies of Al ₂ O ₃ deposited on 4Hâ€SiC(0001). Surface and Interface Analysis, 2008, 40, 822-825.	1.8	9
42	ToF-SIMS depth profiling of a complex polymeric coating employing a C60 sputter source. Surface and Interface Analysis, 2007, 39, 467-475.	1.8	25
43	Surface and interface analysis of complex polymeric paint formulations. Surface and Interface Analysis, 2006, 38, 557-560.	1.8	10
44	Interface analysis and compositional depth profiling by XPS of polymer coatings prepared using ultra-low-angle microtomy. Surface and Interface Analysis, 2004, 36, 1032-1036.	1.8	28
45	A ToF-SIMS investigation of a buried polymer/polymer interface exposed by ultra-low-angle microtomy. Surface and Interface Analysis, 2004, 36, 1575-1581.	1.8	37