Giulia Adriani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5986849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab on A Chip, 2017, 17, 448-459.	3.1	338
2	MicroRNA delivery through nanoparticles. Journal of Controlled Release, 2019, 313, 80-95.	4.8	235
3	Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncolmmunology, 2016, 5, e1191731.	2.1	178
4	Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. Journal of Controlled Release, 2012, 158, 148-155.	4.8	177
5	A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight, 2017, 2, .	2.3	169
6	The preferential targeting of the diseased microvasculature by disk-like particles. Biomaterials, 2012, 33, 5504-5513.	5.7	140
7	Controlled electromechanical cell stimulation on-a-chip. Scientific Reports, 2015, 5, 11800.	1.6	97
8	Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Oncotarget, 2015, 6, 25295-25307.	0.8	97
9	Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Frontiers in Immunology, 2018, 9, 416.	2.2	91
10	Engineering a 3D microfluidic culture platform for tumor-treating field application. Scientific Reports, 2016, 6, 26584.	1.6	73
11	A Mini-Review on Thalidomide: Chemistry, Mechanisms of Action, Therapeutic Potential and Anti-Angiogenic Properties in Multiple Myeloma. Current Medicinal Chemistry, 2017, 24, 2736-2744.	1.2	71
12	Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discovery Today, 2016, 21, 1472-1478.	3.2	63
13	Modeling Nanocarrier Transport across a 3D In Vitro Human Bloodâ€Brain–Barrier Microvasculature. Advanced Healthcare Materials, 2020, 9, e1901486.	3.9	57
14	A Facile Method to Probe the Vascular Permeability of Nanoparticles in Nanomedicine Applications. Scientific Reports, 2017, 7, 707.	1.6	49
15	Integrated in silico and 3D in vitro model of macrophage migration in response to physical and chemical factors in the tumor microenvironment. Integrative Biology (United Kingdom), 2020, 12, 90-108.	0.6	41
16	A combined microfluidic-transcriptomic approach to characterize the extravasation potential of cancer cells. Oncotarget, 2018, 9, 36110-36125.	0.8	26
17	Modeling the Blood-Brain Barrier in a 3D triple co-culture microfluidic system. , 2015, 2015, 338-41.		24
18	Quantitative screening of the effects of hyper-osmotic stress on cancer cells cultured in 2- or 3-dimensional settings. Scientific Reports, 2019, 9, 13782.	1.6	23

GIULIA ADRIANI

#	Article	IF	CITATIONS
19	Phthalimide Derivative Shows Anti-angiogenic Activity in a 3D Microfluidic Model and No Teratogenicity in Zebrafish Embryos. Frontiers in Pharmacology, 2019, 10, 349.	1.6	20
20	A 3D pancreatic tumor model to study T cell infiltration. Biomaterials Science, 2021, 9, 7420-7431.	2.6	17
21	Nanoparticle-Based Therapies for Turning Cold Tumors Hot: How to Treat an Immunosuppressive Tumor Microenvironment. Frontiers in Bioengineering and Biotechnology, 2021, 9, 689245.	2.0	16
22	Using microfluidics to investigate tumor cell extravasation and T-cell immunotherapies. , 2015, 2015, 1853-6.		14
23	Studying TCR T cell anti-tumor activity in a microfluidic intrahepatic tumor model. Methods in Cell Biology, 2018, 146, 199-214.	0.5	9
24	Models for Monocytic Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1224, 87-115.	0.8	8
25	Gene Detection in Complex Biological Media Using Semiconductor Nanorods within an Integrated Microfluidic Device. Analytical Chemistry, 2015, 87, 10292-10298.	3.2	6
26	Highly fluorescent, monolithic semiconductor nanorod clusters for ultrasensitive biodetection. Chemical Communications, 2018, 54, 11352-11355.	2.2	4
27	Abstract 1578: Exploring the role of tumor-conditioned macrophage metabolism on extravasation of pancreatic ductal adenocarcinoma cells. , 2016, , .		3
28	Bloodâ€Brain–Barrier Microvasculatures: Modeling Nanocarrier Transport across a 3D In Vitro Human Bloodâ€Brain–Barrier Microvasculature (Adv. Healthcare Mater. 7/2020). Advanced Healthcare Materials, 2020, 9, 2070021.	3.9	2
29	<i>In vitro</i> 3D liver tumor microenvironment models for immune cell therapy optimization. APL Bioengineering, 2021, 5, 041502.	3.3	2
30	A Human Neurovascular Unit On-a-Chip. Methods in Molecular Biology, 2022, 2373, 107-119.	0.4	1