Jinzhuo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5986676/publications.pdf

Version: 2024-02-01

361413 345221 1,351 39 20 36 citations h-index g-index papers 45 45 45 2044 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Exposure to concentrated ambient PM2.5 (CAPM) induces intestinal disturbance via inflammation and alternation of gut microbiome. Environment International, 2022, 161, 107138.	10.0	22
2	Childhood coâ€exposure of cold stress and <scp>PM_{2.5}</scp> aggravates the susceptibility and severity of asthma in adulthood of mice. Environmental Toxicology, 2021, 36, 177-184.	4.0	6
3	Parental <scp>PM₂</scp> _{.5} exposure changes Th17/Treg cells in offspring, is associated with the elevation of blood pressure. Environmental Toxicology, 2021, 36, 1152-1161.	4.0	8
4	Functional titanium dioxide nanoparticle conjugated with phthalocyanine and folic acid as a promising photosensitizer for targeted photodynamic therapy in vitro and in vivo. Journal of Photochemistry and Photobiology B: Biology, 2021, 215, 112122.	3.8	30
5	Ambient PM2.5-induced brain injury is associated with the activation of PI3K/AKT/FoxO1 pathway. Environmental Science and Pollution Research, 2021, , 1.	5.3	11
6	NLRP3 inflammasome is involved in ambient PM _{2.5} -related metabolic disorders in diabetic model mice but not in wild-type mice. Inhalation Toxicology, 2021, 33, 260-267.	1.6	11
7	Overlooked Significant Impact of Trace Metals on the Bacterial Community of PM _{2.5} in Highâ€√ime Resolution. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035408.	3.3	3
8	Ambient fine particulate matter induced the elevation of blood pressure through ACE2/Ang(1–7) pathway: The evidence from urine metabolites. Ecotoxicology and Environmental Safety, 2020, 203, 111044.	6.0	13
9	Ambient PM particles reach mouse brain, generate ultrastructural hallmarks of neuroinflammation, and stimulate amyloid deposition, tangles, and plaque formation. Talanta Open, 2020, 2, 100013.	3.7	11
10	Fine Particulate Matter (PM _{2.5}) upregulates expression of Inflammasome NLRP1 <i>via</i> ROS/NF-κB signaling in HaCaT Cells. International Journal of Medical Sciences, 2020, 17, 2200-2206.	2.5	17
11	Metabolomics analysis of urine from healthy wild type mice exposed to ambient PM2.5. Science of the Total Environment, 2020, 714, 136790.	8.0	24
12	AMPK activation ameliorates fine particulate matter-induced hepatic injury. Environmental Science and Pollution Research, 2020, 27, 21311-21319.	5. 3	8
13	PM2.5 exposure and cold stress exacerbates asthma in mice by increasing histone acetylation in IL-4 gene promoter in CD4+ T cells. Toxicology Letters, 2019, 316, 147-153.	0.8	23
14	AMPK activation attenuates inflammatory response to reduce ambient PM2.5-induced metabolic disorders in healthy and diabetic mice. Ecotoxicology and Environmental Safety, 2019, 179, 290-300.	6.0	34
15	Parental PM2.5 Exposure-Promoted Development of Metabolic Syndrome in Offspring Is Associated With the Changes of Immune Microenvironment. Toxicological Sciences, 2019, 170, 415-426.	3.1	16
16	Fine particulate matter-induced cardiovascular injury is associated with NLRP3 inflammasome activation in Apo E-/- mice. Ecotoxicology and Environmental Safety, 2019, 174, 92-99.	6.0	40
17	The essential function of <scp>CARD</scp> 9 in dietâ€induced inflammation and metabolic disorders in mice. Journal of Cellular and Molecular Medicine, 2018, 22, 2993-3004.	3.6	15
18	Air pollution is associated with the development of atherosclerosis via the cooperation of CD36 and NLRP3 inflammasome in ApoE -/- mice. Toxicology Letters, 2018, 290, 123-132.	0.8	74

#	Article	IF	CITATIONS
19	The severity of lung injury and metabolic disorders induced by ambient PM _{2.5} exposure is associated with cumulative dose. Inhalation Toxicology, 2018, 30, 239-246.	1.6	13
20	The protective effects of selenium supplementation on ambient PM2.5-induced cardiovascular injury in rats. Environmental Science and Pollution Research, 2018, 25, 22153-22162.	5.3	22
21	Combined effects of vitamin E and omega-3 fatty acids on protecting ambient PM2.5-induced cardiovascular injury in rats. Chemosphere, 2017, 173, 14-21.	8.2	44
22	CARD9-mediated ambient PM2.5-induced pulmonary injury is associated with Th17 cell. Toxicology Letters, 2017, 273, 36-43.	0.8	20
23	Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters. Environmental Science and Pollution Research, 2017, 24, 4008-4017.	5.3	24
24	Effects of Ambient Fine Particles PM2.5 on Human HaCaT Cells. International Journal of Environmental Research and Public Health, 2017, 14, 72.	2.6	53
25	Effects of Fine Particulate Matter (PM2.5) on Systemic Oxidative Stress and Cardiac Function in ApoEâ^'/â^' Mice. International Journal of Environmental Research and Public Health, 2016, 13, 484.	2.6	59
26	Effect of Vitamin E and Omega-3 Fatty Acids on Protecting Ambient PM2.5-Induced Inflammatory Response and Oxidative Stress in Vascular Endothelial Cells. PLoS ONE, 2016, 11, e0152216.	2.5	69
27	Traffic-related air pollution is associated with cardio-metabolic biomarkers in general residents. International Archives of Occupational and Environmental Health, 2016, 89, 911-921.	2.3	46
28	Individual PM2.5 exposure is associated with the impairment of cardiac autonomic modulation in general residents. Environmental Science and Pollution Research, 2016, 23, 10255-10261.	5.3	20
29	Rat lung response to ozone and fine particulate matter (PM _{2.5}) exposures. Environmental Toxicology, 2015, 30, 343-356.	4.0	91
30	IKK inhibition prevents PM2.5-exacerbated cardiac injury in mice with type 2 diabetes. Journal of Environmental Sciences, 2015, 31, 98-103.	6.1	14
31	Treg responses are associated with PM _{2.5} -induced exacerbation of viral myocarditis. Inhalation Toxicology, 2015, 27, 281-286.	1.6	19
32	Preliminary study to explore gene-PM2.5 interactive effects on respiratory system in traffic policemen. International Journal of Occupational Medicine and Environmental Health, 2015, 28, 971-983.	1.3	22
33	Long-Term Exposure to Concentrated Ambient PM _{2.5} Increases Mouse Blood Pressure through Abnormal Activation of the Sympathetic Nervous System: A Role for Hypothalamic Inflammation. Environmental Health Perspectives, 2014, 122, 79-86.	6.0	161
34	Acute effects of air pollution on asthma hospitalization in Shanghai, China. Environmental Pollution, 2014, 191, 139-144.	7.5	94
35	Preexposure to PM2.5 exacerbates acute viral myocarditis associated with Th17 cell. International Journal of Cardiology, 2013, 168, 3837-3845.	1.7	34
36	The biological effects of individual-level PM _{2.5} exposure on systemic immunity and inflammatory response in traffic policemen. Occupational and Environmental Medicine, 2013, 70, 426-431.	2.8	113

#	Article	IF	CITATIONS
37	Imbalance of Th1 and Th2 cells in cardiac injury induced by ambient fine particles. Toxicology Letters, 2012, 208, 225-231.	0.8	22
38	Effects of atorvastatin on fine particle-induced inflammatory response, oxidative stress and endothelial function in human umbilical vein endothelial cells. Human and Experimental Toxicology, 2011, 30, 1828-1839.	2.2	14
39	Acute effects of fine particles on cardiovascular system: Differences between the spontaneously hypertensive rats and wistar kyoto rats. Toxicology Letters, 2010, 193, 50-60.	0.8	28