Lin Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5986339/publications.pdf

Version: 2024-02-01

1,041	100,442	163	264
papers	citations	h-index	g-index
1072	1072	1072	60330 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Multiresolution Discriminative Mixup Network for Fine-Grained Visual Categorization. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 3488-3500.	11.3	6
2	Boosting Li-ion storage in Li2MnO3 by unequal-valent Ti4+-substitution and interlayer Li vacancies building. Chinese Chemical Letters, 2023, 34, 107494.	9.0	5
3	Localizedâ€domains staging structure and evolution in lithiated graphite. , 2023, 5, .		21
4	Explainable Diabetic Retinopathy Detection and Retinal Image Generation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 44-55.	6.3	29
5	Ultra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nature Materials, 2022, 21, 47-53.	27.5	110
6	Fine-tuning of Pd-Rh core-shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Research, 2022, 15, 1288-1294.	10.4	18
7	Engineering the synergistic effect of carbon dotsâ€stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat, 2022, 3, 249-259.	10.7	38
8	Pollen-like self-supported FeIr alloy for improved hydrogen evolution reaction in acid electrolyte. Journal of Energy Chemistry, 2022, 66, 560-565.	12.9	92
9	Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries. Chemical Engineering Journal, 2022, 428, 131083.	12.7	33
10	Beyond Triplet Loss: Person Re-Identification With Fine-Grained Difference-Aware Pairwise Loss. IEEE Transactions on Multimedia, 2022, 24, 1665-1677.	7.2	129
11	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. Advanced Materials, 2022, 34, e2107400.	21.0	68
12	Electronic-structure evolution of SrFeO _{3–x} during topotactic phase transformation. Journal of Physics Condensed Matter, 2022, 34, 064001.	1.8	4
13	Crâ€Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity. Advanced Materials, 2022, 34, e2105276.	21.0	40
14	The discovery of a superhard P-type transparent semiconductor: Al _{2.69} B ₅₀ . Materials Horizons, 2022, 9, 748-755.	12.2	3
15	Exchange Coupling in Synthetic Anionâ€Engineered Chromia Heterostructures. Advanced Functional Materials, 2022, 32, 2109828.	14.9	3
16	Wet-chemistry hydrogen doped TiO2 with switchable defects control for photocatalytic hydrogen evolution. Matter, 2022, 5, 206-218.	10.0	66
17	Boosting photocatalytic hydrogen production by creating isotype heterojunctions and single-atom active sites in highly-crystallized carbon nitride. Science Bulletin, 2022, 67, 520-528.	9.0	29
18	Atomic-scale observation of non-classical nucleation-mediated phase transformation in a titanium alloy. Nature Materials, 2022, 21, 290-296.	27.5	38

#	Article	IF	CITATIONS
19	Boosting photocatalytic hydrogen evolution: Orbital redistribution of ultrathin ZnIn2S4 nanosheets via atomic defects. Applied Catalysis B: Environmental, 2022, 305, 121007.	20.2	61
20	Ge Incorporation to Stabilize Efficient Inorganic CsPbI ₃ Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	55
21	Stabilizing Layered Structure in Aqueous Electrolyte via Dynamic Water Intercalation/Deintercalation. Advanced Materials, 2022, 34, e2108541.	21.0	22
22	Surface Molecular Functionalization of Unusual Phase Metal Nanomaterials for Highly Efficient Electrochemical Carbon Dioxide Reduction under Industryâ€Relevant Current Density. Small, 2022, 18, e2106766.	10.0	30
23	Intercalationâ€Activated Layered MoO ₃ Nanobelts as Biodegradable Nanozymes for Tumorâ€Specific Photoâ€Enhanced Catalytic Therapy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	109
24	Intercalationâ€Activated Layered MoO ₃ Nanobelts as Biodegradable Nanozymes for Tumorâ€Specific Photoâ€Enhanced Catalytic Therapy. Angewandte Chemie, 2022, 134, .	2.0	16
25	Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet. Nano Letters, 2022, 22, 1233-1241.	9.1	21
26	Room-Temperature Ferromagnetism at an Oxide-Nitride Interface. Physical Review Letters, 2022, 128, 017202.	7.8	11
27	Crystallineâ€Amorphous Interfaces Coupling of CoSe ₂ /CoP with Optimized dâ€Band Center and Boosted Electrocatalytic Hydrogen Evolution. Advanced Materials, 2022, 34, e2110631.	21.0	283
28	Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries. Journal of the American Chemical Society, 2022, 144, 2179-2188.	13.7	38
29	Homogeneously Mixing Different Metal–Organic Framework Structures in Single Nanocrystals through Forming Solid Solutions. ACS Central Science, 2022, 8, 184-191.	11.3	14
30	Regulating the Local Spin State and Band Structure in Ni ₃ S ₂ Nanosheet for Improved Oxygen Evolution Activity. Advanced Functional Materials, 2022, 32, .	14.9	99
31	Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Research, 2022, 15, 4117-4123.	10.4	13
32	Ensemble Machineâ€Learningâ€Based Analysis for In Situ Electron Diffraction. Advanced Theory and Simulations, 2022, 5, .	2.8	7
33	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224.	23.7	44
34	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1
35	A van der Waals Ferroelectric Tunnel Junction for Ultrahighâ€√emperature Operation Memory. Small Methods, 2022, 6, e2101583.	8.6	22
36	Unblocking Oxygen Charge Compensation for Stabilized Highâ€Voltage Structure in P2â€Type Sodiumâ€Ion Cathode. Advanced Science, 2022, 9, e2200498.	11.2	32

#	Article	IF	CITATIONS
37	Al ³⁺ Dopants Induced Mg ²⁺ Vacancies Stabilizing Single-Atom Cu Catalyst for Efficient Free-Radical Hydrophosphinylation of Alkenes. Journal of the American Chemical Society, 2022, 144, 4321-4326.	13.7	32
38	Anion Doping for Layered Oxides with a Solid-Solution Reaction for Potassium-Ion Battery Cathodes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13379-13387.	8.0	11
39	Dual-gated single-molecule field-effect transistors beyond Moore's law. Nature Communications, 2022, 13, 1410.	12.8	38
40	Spinâ€Glass State above Room Temperature in a Layered Nickelate La <i>>_n</i> ₊₁ Ni <i>>_n</i> <0 ₃ <i>>_n</i> <advanced .<="" 2022,="" 8,="" electronic="" materials,="" td=""><td>ub5.1</td><td>0</td></advanced>	ub5.1	0
41	Singleâ€Atom Fe Catalysts for Fentonâ€Like Reactions: Roles of Different N Species. Advanced Materials, 2022, 34, e2110653.	21.0	158
42	Selfâ€Regulated Chemical Substitution in a Highly Strained Perovskite Oxide. Advanced Functional Materials, 2022, 32, .	14.9	3
43	Chemical order-disorder nanodomains in Fe3Pt bulk alloy. National Science Review, 2022, 9, .	9.5	3
44	Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Research, 2022, 15, 6574-6581.	10.4	30
45	Caging-Pnictogen-Induced Superconductivity in Skutterudites $IrX < sub > 3 < / sub > (X = As, P)$. Journal of the American Chemical Society, 2022, 144, 6208-6214.	13.7	13
46	Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures. Nano Research, 2022, 15, 7861-7867.	10.4	30
47	Two-Dimensional Electron Gas with High Mobility Forming at BaO/SrTiO ₃ Interface. Chinese Physics Letters, 2022, 39, 047301.	3.3	8
48	Electrochemically Exfoliated Chlorineâ€Doped Graphene for Flexible Allâ€Solidâ€State Microâ€Supercapacitors with High Volumetric Energy Density. Advanced Materials, 2022, 34, e2106309.	21.0	33
49	Accurately Localizing Multiple Nanoparticles in a Multishelled Matrix Through Shellâ€to ore Evolution for Maximizing Energy‧torage Capability. Advanced Materials, 2022, 34, e2200206.	21.0	32
50	Largeâ€Scale Hf _{0.5} Zr _{0.5} O ₂ Membranes with Robust Ferroelectricity. Advanced Materials, 2022, 34, e2109889.	21.0	25
51	Bimodal polymorphic nanodomains in ferroelectric films for giant energy storage. Energy Storage Materials, 2022, 48, 306-313.	18.0	12
52	Interfacial engineering regulated by CeO to boost efficiently alkaline overall water splitting and acidic hydrogen evolution reaction. Journal of Materials Science and Technology, 2022, 120, 129-138.	10.7	15
53	Selective area epitaxy of PbTe-Pb hybrid nanowires on a lattice-matched substrate. Physical Review Materials, 2022, 6, .	2.4	16
54	Layer-by-layer epitaxy of multi-layer MoS2 wafers. National Science Review, 2022, 9, .	9.5	41

#	Article	IF	CITATIONS
55	Saltâ€Assisted 2Hâ€toâ€1T′ Phase Transformation of Transition Metal Dichalcogenides. Advanced Materials, 2022, 34, e2201194.	21.0	19
56	Janusâ€like B _x C/C Quantum Sheets with Zâ€Scheme Mechanism Strengthen Tumor Photothermalâ€lmmunotherapy in NIRâ€II Biowindow. Small Methods, 2022, 6, e2101551.	8.6	6
57	Two-dimensional superconductivity in a bulk superlattice van der Waals material <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:mrow><mml:mrow><mml:mi>Ba</mml:mi><mml:mrow><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:msub><mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:m< td=""><td>126k/mml</td><td>:m:n></td></mml:m<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:msub></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	126k/mml	:m:n>
58	Degrees of freedom for energy storage material. , 2022, 4, 633-644.		9
59	Local Coordination Regulation through Tuning Atomicâ€Scale Cavities of Pd Metallene toward Efficient Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2202084.	21.0	57
60	Pressure-induced superconductivity in the noncentrosymmetric Weyl semimetals <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>LaAl</mml:mi><mml:mi>X</mml:mi></mml:mrow></mml:math> <mml:mrow><mml:mo>(</mml:mo><mml:mi>X</mml:mi></mml:mrow>	3.2	7
61	Physical Review B, 2022, 105, . Intracellular silicification by early-branching magnetotactic bacteria. Science Advances, 2022, 8, eabn6045.	10.3	11
62	Structure modification of Ni-rich layered oxide cathode toward advanced lithium-ion batteries. Journal of Materials Research, 2022, 37, 3250-3268.	2.6	4
63	Realizing Negatively Charged Metal Atoms through Controllable dâ€Electron Transfer in Ternary Ir _{1â^²} <i>_x</i> Sb Intermetallic Alloy for Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	19.5	104
64	Realizing Two-Electron Transfer in Ni(OH) < sub > 2 < /sub > Nanosheets for Energy Storage. Journal of the American Chemical Society, 2022, 144, 8969-8976.	13.7	116
65	Ferroelastic domain identification and toughening mechanism for yttrium tantalate–zirconium oxide. Journal of Materials Science and Technology, 2022, 127, 78-88.	10.7	21
66	Preparation of Dye Moleculeâ€Intercalated MoO ₃ Organic/Inorganic Superlattice Nanoparticles for Fluorescence Imagingâ€Guided Catalytic Therapy. Small, 2022, 18, .	10.0	18
67	Singleâ€Metal Atoms and Ultraâ€Small Clusters Manipulating Charge Carrier Migration in Polymeric Perylene Diimide for Efficient Photocatalytic Oxygen Production. Advanced Energy Materials, 2022, 12,	19.5	40
68	Highly Active Si Sites Enabled by Negative Valent Ru for Electrocatalytic Hydrogen Evolution in LaRuSi. Angewandte Chemie - International Edition, 2022, 61, .	13.8	86
69	Highly Active Si Sites Enabled by Negative Valent Ru for Electrocatalytic Hydrogen Evolution in LaRuSi. Angewandte Chemie, 2022, 134, .	2.0	28
70	A General Synthetic Method for High-Entropy Alloy Subnanometer Ribbons. Journal of the American Chemical Society, 2022, 144, 10582-10590.	13.7	108
71	Linker Scissoring Strategy Enables Precise Shaping of Metal–Organic Frameworks for Chromatographic Separation. Angewandte Chemie, 2022, 134, .	2.0	1
72	Synthesis of KVPO ₄ F/Carbon Porous Single Crystalline Nanoplates for High-Rate Potassium-Ion Batteries. Nano Letters, 2022, 22, 4933-4940.	9.1	37

#	Article	IF	CITATIONS
73	Kinetic Origin of Planar Gliding in Single-Crystalline Ni-Rich Cathodes . Journal of the American Chemical Society, 2022, 144, 11338-11347.	13.7	63
74	Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nature Communications, 2022, 13, .	12.8	95
75	Linker Scissoring Strategy Enables Precise Shaping of Metal–Organic Frameworks for Chromatographic Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
76	High-entropy enhanced capacitive energy storage. Nature Materials, 2022, 21, 1074-1080.	27.5	161
77	Epitaxial stabilization of an orthorhombic Mg-Ti-O superconductor. Physical Review B, 2022, 105, .	3.2	2
78	Spreading monoclinic boundary network between hexagonal primary grains for high performance Ni-rich cathode materials. Nano Energy, 2022, 100, 107502.	16.0	7
79	Unraveling the Evolution of Transition Metals during Li Alloying–Dealloying by In-Operando Magnetometry. Chemistry of Materials, 2022, 34, 5852-5859.	6.7	19
80	Industrialâ€Level CO ₂ Electroreduction Using Solidâ€Electrolyte Devices Enabled by Highâ€Loading Nickel Atomic Site Catalysts. Advanced Energy Materials, 2022, 12, .	19.5	32
81	Anti-dissolution Pt single site with $Pt(OH)(O3)/Co(P)$ coordination for efficient alkaline water splitting electrolyzer. Nature Communications, 2022, 13, .	12.8	73
82	Atomically Dispersed MoO $<$ sub $><$ i $>xi></sub> on Rhodium Metallene Boosts Electrocatalyzed Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .$	13.8	57
83	Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 2021, 110, 107332.	8.1	214
84	Spiny Pd/PtFe core/shell nanotubes with rich high-index facets for efficient electrocatalysis. Science Bulletin, 2021, 66, 44-51.	9.0	54
85	In Operando Visualization of Cation Disorder Unravels Voltage Decay in Niâ€Rich Cathodes. Small Methods, 2021, 5, e2000730.	8.6	18
86	Structures and Functional Properties of Amorphous Alloys. Small Structures, 2021, 2, 2000057.	12.0	28
87	Enhancing CO ₂ Electrocatalysis on 2D Porphyrinâ€Based Metal–Organic Framework Nanosheets Coupled with Visibleâ€Light. Small Methods, 2021, 5, e2000991.	8.6	50
88	Strainâ€Mediated High Conductivity in Ultrathin Antiferromagnetic Metallic Nitrides. Advanced Materials, 2021, 33, 2005920.	21.0	25
89	Quasiâ€Epitaxial Growth of Magnetic Nanostructures on 4Hâ€Au Nanoribbons. Advanced Materials, 2021, 33, e2007140.	21.0	18
90	Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity. CheM, 2021, 7, 436-449.	11.7	216

#	Article	IF	Citations
91	Porous \hat{l}^3 -Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Research, 2021, 14, 1435-1442.	10.4	46
92	Sub-nanometric Manganous Oxide Clusters in Nitrogen Doped Mesoporous Carbon Nanosheets for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 700-708.	9.1	60
93	LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nature Sustainability, 2021, 4, 392-401.	23.7	156
94	Nanoporous Surface Highâ€Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009613.	14.9	145
95	Tunnel Intergrowth Li <i></i> MnO ₂ Nanosheet Arrays as 3D Cathode for Highâ€Performance Allâ€Solidâ€State Thin Film Lithium Microbatteries. Advanced Materials, 2021, 33, e2003524.	21.0	53
96	Elevating the dâ€Band Center of Sixâ€Coordinated Octahedrons in Co ₉ S ₈ through Feâ€Incorporated Topochemical Deintercalation. Advanced Energy Materials, 2021, 11, 2003023.	19.5	121
97	Retarded layered-to-spinel phase transition in structure reinforced birnessite with high Li content. Science Bulletin, 2021, 66, 219-224.	9.0	9
98	Structurally Disordered Phosphorus-Doped Pt as a Highly Active Electrocatalyst for an Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 355-363.	11.2	79
99	Extrinsic Photoconduction Induced Shortâ€Wavelength Infrared Photodetectors Based on Geâ€Based Chalcogenides. Small, 2021, 17, e2006765.	10.0	25
100	Strong Ferromagnetism Achieved via Breathing Lattices in Atomically Thin Cobaltites. Advanced Materials, 2021, 33, e2001324.	21.0	21
101	Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nature Materials, 2021, 20, 76-83.	27.5	432
102	RhSe ₂ : A Superior 3D Electrocatalyst with Multiple Active Facets for Hydrogen Evolution Reaction in Both Acid and Alkaline Solutions. Advanced Materials, 2021, 33, e2007894.	21.0	205
103	Surfaceâ€Bound Domain Penetration and Large Wall Current. Advanced Electronic Materials, 2021, 7, 2000720.	5.1	8
104	One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nature Communications, 2021, 12, 709.	12.8	137
105	Ferromagnetic Materials: Strong Ferromagnetism Achieved via Breathing Lattices in Atomically Thin Cobaltites (Adv. Mater. 4/2021). Advanced Materials, 2021, 33, 2170026.	21.0	0
106	Single-atom nickel terminating sp ² and sp ³ nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chemical Science, 2021, 12, 3633-3643.	7.4	68
107	Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nature Communications, $2021, 12, 13$.	12.8	85
108	Relation-Aware Reasoning with Graph Convolutional Network. Lecture Notes in Computer Science, 2021, , 52-64.	1.3	0

#	Article	IF	CITATIONS
109	Innentitelbild: Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting (Angew. Chem. 13/2021). Angewandte Chemie, 2021, 133, 6906-6906.	2.0	0
110	Long-Term Cycle Stability Enabled by the Incorporation of Ni into Li ₂ MnO ₃ Phase in the Mn-Based Li-Rich Layered Materials. ACS Energy Letters, 2021, 6, 789-798.	17.4	27
111	Controlling the Stacking Modes of Metal–Organic Framework Nanosheets through Host–Guest Noncovalent Interactions. Angewandte Chemie - International Edition, 2021, 60, 6920-6925.	13.8	40
112	Proximate Quantum Spin Liquid on Designer Lattice. Nano Letters, 2021, 21, 2010-2017.	9.1	4
113	Controlling the Stacking Modes of Metal–Organic Framework Nanosheets through Host–Guest Noncovalent Interactions. Angewandte Chemie, 2021, 133, 6996-7001.	2.0	8
114	Structural twinning-induced insulating phase in CrN (111) films. Physical Review Materials, 2021, 5, .	2.4	12
115	Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. Angewandte Chemie, 2021, 133, 7002-7007.	2.0	8
116	Construction of Dualâ€Activeâ€Site Copper Catalyst Containing both CuN ₃ and CuN ₄ Sites. Small, 2021, 17, e2006834.	10.0	52
117	Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 6926-6931.	13.8	65
118	Robust Surface Reconstruction Induced by Subsurface Ni/Li Antisites in Niâ€Rich Cathodes. Advanced Functional Materials, 2021, 31, 2010291.	14.9	36
119	Direct observation of atomic-level fractal structure in a metallic glass membrane. Science Bulletin, 2021, 66, 1312-1318.	9.0	11
120	Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable Nanoagents for Photothermal Cancer Therapy. Small, 2021, 17, e2007486.	10.0	94
121	Frontispiz: Controlling the Stacking Modes of Metal–Organic Framework Nanosheets through Host–Guest Noncovalent Interactions. Angewandte Chemie, 2021, 133, .	2.0	0
122	Effect of high-temperature up-quenching on stabilizing off-eutectic metallic glasses. Physical Review B, 2021, 103, .	3.2	6
123	Selective Epitaxial Growth of Rh Nanorods on 2H/ <i>fcc</i> Heterophase Au Nanosheets to Form 1D/2D Rh–Au Heterostructures for Highly Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 4387-4396.	13.7	56
124	Realization of AlSb in the Double-Layer Honeycomb Structure: A Robust Class of Two-Dimensional Material. ACS Nano, 2021, 15, 8184-8191.	14.6	20
125	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	2.0	2
126	Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Science Advances, 2021, 7, .	10.3	64

#	Article	IF	CITATIONS
127	Near-room temperature ferromagnetic insulating state in highly distorted LaCoO2.5 with CoO5 square pyramids. Nature Communications, 2021, 12, 1853.	12.8	25
128	Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 8243-8250.	13.8	163
129	Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge-discharge. Joule, 2021, 5, 720-736.	24.0	56
130	Nanoburl Graphites. Advanced Materials, 2021, 33, e2007513.	21.0	19
131	Liâ€Rich Li ₂ [Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296.	13.8	71
132	Dimensional Control of Octahedral Tilt in SrRuO ₃ via Infinite-Layered Oxides. Nano Letters, 2021, 21, 3146-3154.	9.1	14
133	Frontispiece: Controlling the Stacking Modes of Metal–Organic Framework Nanosheets through Host–Guest Noncovalent Interactions. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
134	Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nature Communications, 2021, 12, 1522.	12.8	103
135	Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. Angewandte Chemie, 2021, 133, 8324-8331.	2.0	18
136	High-Loading Single-Atomic-Site Silver Catalysts with an $Ag < sub>1 < sub>2 < sub>2 < sub>2 < sub>1 < sub>3 & sub>1 < sub>2 < sub>2 < sub>1 < sub>2 $	11.2	62
137	Reversed Active Sites Boost the Intrinsic Activity of Grapheneâ€like Cobalt Selenide for Hydrogen Evolution. Angewandte Chemie, 2021, 133, 12468-12473.	2.0	17
138	Stable Bimetallene Hydride Boosts Anodic CO Tolerance of Fuel Cells. ACS Energy Letters, 2021, 6, 1912-1919.	17.4	48
139	Chemical-Pressure-Modulated BaTiO ₃ Thin Films with Large Spontaneous Polarization and High Curie Temperature. Journal of the American Chemical Society, 2021, 143, 6491-6497.	13.7	37
140	Iron carbide allured lithium metal storage in carbon nanotube cavities. Energy Storage Materials, 2021, 36, 459-465.	18.0	39
141	Metal–Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation. Journal of the American Chemical Society, 2021, 143, 5727-5736.	13.7	157
142	Partially reduced Pd single atoms on CdS nanorods enable photocatalytic reforming of ethanol into high value-added multicarbon compound. CheM, 2021, 7, 1033-1049.	11.7	55
143	Reversed Active Sites Boost the Intrinsic Activity of Grapheneâ€like Cobalt Selenide for Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 12360-12365.	13.8	142
144	Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nature Communications, 2021, 12, 2682.	12.8	154

#	Article	IF	CITATIONS
145	Cation-synergy stabilizing anion redox of Chevrel phase Mo6S8 in aluminum ion battery. Energy Storage Materials, 2021, 37, 87-93.	18.0	31
146	Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nature Communications, 2021, 12, 3181.	12.8	156
147	A Unique Gas-Migration, Trapping, and Emitting Strategy for High-Loading Single Atomic Cd Sites for Carbon Dioxide Electroreduction. Nano Letters, 2021, 21, 4262-4269.	9.1	48
148	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2021, 133, 13500-13505.	2.0	29
149	Highâ€Index Faceted PdPtCu Ultrathin Nanorings Enable Highly Active and Stable Oxygen Reduction Electrocatalysis. Small Methods, 2021, 5, e2100154.	8.6	34
150	A medium-range structure motif linking amorphous and crystalline states. Nature Materials, 2021, 20, 1347-1352.	27.5	92
151	Emergent Magnetic Phenomenon with Unconventional Structure in Epitaxial Manganate Thin Films. Advanced Science, 2021, 8, 2100177.	11.2	7
152	Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nature Communications, 2021, 12, 3071.	12.8	81
153	Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode. Chemical Engineering Journal, 2021, 412, 128735.	12.7	30
154	Co-deposition growth and superconductivity of La2â^'xSrxCuO4 films by reactive molecular beam epitaxy. Physical Review B, 2021, 103, .	3.2	1
155	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 13388-13393.	13.8	201
156	Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nature Catalysis, 2021, 4, 407-417.	34.4	517
157	Decreasing the complex permittivity to enhance microwave absorption properties of flaky FeSiAl/MnZn ferrites composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 18371-18380.	2.2	10
158	One-step epitaxy of high-mobility La-doped BaSnO3 films by high-pressure magnetron sputtering. APL Materials, 2021, 9, .	5.1	16
159	Planarâ€Coordination PdSe ₂ Nanosheets as Highly Active Electrocatalyst for Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2102321.	14.9	98
160	A structural perspective on giant permittivity CaCu3Ti4O12: One way to quantum dielectric physics in solids. Open Ceramics, 2021, 6, 100126.	2.0	10
161	Amorphous Redox-Rich Polysulfides for Mg Cathodes. Jacs Au, 2021, 1, 1266-1274.	7.9	14
162	Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygenâ€Coordinated Structure and Highâ€Loadings. Angewandte Chemie - International Edition, 2021, 60, 15248-15253.	13.8	38

#	Article	IF	CITATIONS
163	Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygenâ€Coordinated Structure and Highâ€Loadings. Angewandte Chemie, 2021, 133, 15376-15381.	2.0	24
164	Intrinsic toughening and stable crack propagation in hexagonal boron nitride. Nature, 2021, 594, 57-61.	27.8	105
165	Enhanced electric-field-induced strains in (K,Na)NbO3 piezoelectrics from heterogeneous structures. Materials Today, 2021, 46, 44-53.	14.2	36
166	Single-Crystal Inorganic Helical Architectures Induced by Asymmetrical Defects in Sub-Nanometric Wires. Journal of the American Chemical Society, 2021, 143, 9858-9865.	13.7	26
167	Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nature Communications, 2021, 12, 4205.	12.8	69
168	Enhancement of Spin–Orbit Torque by Strain Engineering in SrRuO ₃ Films. Advanced Functional Materials, 2021, 31, 2100380.	14.9	26
169	display="inline"> <mml:mrow><mml:mi>s</mml:mi></mml:mrow> -Wave Pairing in Josephson Junctions Made of Twisted Ultrathin <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><td>8.9</td><td>34</td></mml:mrow></mml:math>	8.9	34
170	Innenrücktitelbild: Boosting Photocatalytic Water Oxidation Over Bifunctional Rh ⁰ â∈Rh ³⁺ Sites (Angew. Chem. 42/2021). Angewandte Chemie, 2021, 133, 23211-23211.	2.0	0
171	Electron density distribution of LiMn ₂ O ₄ cathode investigated by synchrotron powder x-ray diffraction*. Chinese Physics B, 2021, 30, 078202.	1.4	5
172	One Nanometer Ptlr Nanowires as High-Efficiency Bifunctional Catalysts for Electrosynthesis of Ethanol into High Value-Added Multicarbon Compound Coupled with Hydrogen Production. Journal of the American Chemical Society, 2021, 143, 10822-10827.	13.7	95
173	Object Detection of Surgical Instruments Based on YOLOv4. , 2021, , .		9
174	Boosting Photocatalytic Water Oxidation Over Bifunctional Rh 0 â€Rh 3+ Sites. Angewandte Chemie, 2021, 133, 22943.	2.0	2
175	Hexagonal Nickel as a Highly Durable and Active Catalyst for Hydrogen Evolution. ACS Catalysis, 2021, 11, 8798-8806.	11.2	12
176	Boosting Photocatalytic Water Oxidation Over Bifunctional Rh ⁰ â€Rh ³⁺ Sites. Angewandte Chemie - International Edition, 2021, 60, 22761-22768.	13.8	19
177	Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nature Communications, 2021, 12, 4412.	12.8	128
178	Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core–Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. Journal of the American Chemical Society, 2021, 143, 11262-11270.	13.7	121
179	Defectâ€Engineered Dzyaloshinskii–Moriya Interaction and Electricâ€Fieldâ€Switchable Topological Spin Texture in SrRuO ₃ . Advanced Materials, 2021, 33, e2102525.	21.0	34
180	Growth of (111)-Orientated GdTe and TmTe Thin Films by van der Waals Molecular Beam Epitaxy. Journal of Physical Chemistry C, 2021, 125, 15465-15471.	3.1	3

#	Article	IF	CITATIONS
181	Grainâ€Boundary Engineering of Monolayer MoS ₂ for Energyâ€Efficient Lateral Synaptic Devices. Advanced Materials, 2021, 33, e2102435.	21.0	53
182	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angewandte Chemie, 2021, 133, 21853-21858.	2.0	16
183	Defectâ€Engineered Dzyaloshinskii–Moriya Interaction and Electricâ€Fieldâ€Switchable Topological Spin Texture in SrRuO ₃ (Adv. Mater. 33/2021). Advanced Materials, 2021, 33, 2170255.	21.0	1
184	Subâ€Monolayer YO <i>_x</i> /l>/MoO <i>_x</i> on Ultrathin Pt Nanowires Boosts Alcohol Oxidation Electrocatalysis. Advanced Materials, 2021, 33, e2103762.	21.0	86
185	Ultrathin PdAuBiTe Nanosheets as Highâ€Performance Oxygen Reduction Catalysts for a Direct Methanol Fuel Cell Device. Advanced Materials, 2021, 33, e2103383.	21.0	61
186	Activating Metal Oxides Nanocatalysts for Electrocatalytic Water Oxidation by Quenching-Induced Near-Surface Metal Atom Functionality. Journal of the American Chemical Society, 2021, 143, 14169-14177.	13.7	101
187	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 21685-21690.	13.8	94
188	Polyoxometalateâ€Based Metalâ€"Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie, 2021, 133, 22696-22702.	2.0	10
189	Grainâ∈Boundary Engineering of Monolayer MoS ₂ for Energyâ∈Efficient Lateral Synaptic Devices (Adv. Mater. 32/2021). Advanced Materials, 2021, 33, 2170251.	21.0	1
190	Reversible dual anionic-redox chemistry in NaCrSSe with fast charging capability. Journal of Power Sources, 2021, 502, 230022.	7.8	5
191	A Pyrite Iron Disulfide Cathode with a Copper Current Collector for Highâ€Energy Reversible Magnesiumâ€Ion Storage. Advanced Materials, 2021, 33, e2103881.	21.0	50
192	Linear magnetization dependence and large intrinsic anomalous Hall effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:m nathvariant="normal">B<mml:mn>13</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> metallic glasses. Physical Review B, 2021, 104, .	nn>78 <td>ml:mn></td>	ml:mn>
193	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, .	10.3	63
194	Enhancing the figure of merit of n-type PbTe materials through multi-scale graphene induced interfacial engineering. Nano Today, 2021, 39, 101176.	11.9	20
195	Li-ionic control of magnetism through spin capacitance and conversion. Matter, 2021, 4, 3605-3620.	10.0	18
196	PtSe ₂ /Pt Heterointerface with Reduced Coordination for Boosted Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 23388-23393.	13.8	153
197	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie - International Edition, 2021, 60, 22522-22528.	13.8	112
198	Regulated color-changing metallic glasses. Journal of Alloys and Compounds, 2021, 876, 160139.	5.5	6

#	Article	IF	Citations
199	An in-situ NH4+-etched strategy for anchoring atomic Mo site on ZnIn2S4 hierarchical nanotubes for superior hydrogen photocatalysis. Science China Chemistry, 2021, 64, 1716-1722.	8.2	17
200	High-Density Ruthenium Single Atoms Anchored on Oxygen-Vacancy-Rich g-C ₃ N ₄ -C-TiO ₂ Heterostructural Nanosphere for Efficient Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 46608-46619.	8.0	20
201	Constructing a stable interfacial phase on single-crystalline Ni-rich cathode via chemical reaction with phosphomolybdic acid. Nano Energy, 2021, 87, 106172.	16.0	59
202	Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angewandte Chemie, 2021, 133, 22904-22910.	2.0	4
203	Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nature Communications, 2021, 12, 5273.	12.8	94
204	Controllable Doping in 2D Layered Materials. Advanced Materials, 2021, 33, e2104942.	21.0	59
205	PtSe ₂ /Pt Heterointerface with Reduced Coordination for Boosted Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 23576-23581.	2.0	33
206	Atomically Dispersed Ruthenium on Nickel Hydroxide Ultrathin Nanoribbons for Highly Efficient Hydrogen Evolution Reaction in Alkaline Media. Advanced Materials, 2021, 33, e2104764.	21.0	70
207	Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nature Communications, 2021, 12, 5370.	12.8	44
208	Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 22722-22728.	13.8	113
209	Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn–Air Batteries. ACS Energy Letters, 2021, 6, 3624-3633.	17.4	103
210	Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science, 2021, 374, 100-104.	12.6	276
211	TiO2 (B) anode for high-voltage aqueous Li-ion batteries. Energy Storage Materials, 2021, 42, 438-444.	18.0	28
212	Brittle-to-ductile transition in Ti–Pt intermetallic compounds. Science Bulletin, 2021, 66, 2281-2287.	9.0	1
213	A robust neuromorphic vision sensor with optical control of ferroelectric switching. Nano Energy, 2021, 89, 106439.	16.0	73
214	Enhanced electric resistivity and dielectric energy storage by vacancy defect complex. Energy Storage Materials, 2021, 42, 836-844.	18.0	24
215	CoO/Co/N-C nanoparticles embedded in carbon as mediate for oxygen reduction electrocatalysts. Journal of Alloys and Compounds, 2021, 885, 161174.	5.5	17
216	Hidden Vacancy Benefit in Monolayer 2D Semiconductors. Advanced Materials, 2021, 33, e2007051.	21.0	65

#	Article	IF	Citations
217	Unveiling the Interface Structure of the Exsolved Co–Fe Alloy Nanoparticles from Double Perovskite and Its Application in Solid Oxide Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3287-3294.	8.0	8
218	Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.	34.4	132
219	Green Synthesis of a Highly Efficient and Stable Single-Atom Iron Catalyst Anchored on Nitrogen-Doped Carbon Nanorods for the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 137-146.	6.7	35
220	Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chemical Science, 2021, 12, 14599-14605.	7.4	20
221	Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021, 13, 1061-1069.	13.6	57
222	High temperature superconductivity at FeSe/LaFeO3 interface. Nature Communications, 2021, 12, 5926.	12.8	21
223	Metalâ€Triazolateâ€Frameworkâ€Derived FeN ₄ Cl ₁ Singleâ€Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 27324-27329.	13.8	142
224	Goal-Oriented Gaze Estimation for Zero-Shot Learning. , 2021, , .		55
225	Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nature Communications, 2021, 12, 6335.	12.8	95
226	Ferromagnetic Enhancement in LaMnO $<$ sub $>$ 3 $<$ /sub $>$ Films with Release and Flexure. Advanced Materials Interfaces, 2021, 8, .	3.7	8
227	General Synthesis of Multipleâ€Cores@Multipleâ€Shells Hollow Composites and Their Application to Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 25719-25722.	13.8	44
228	General Synthesis of Multipleâ€Cores@Multipleâ€Shells Hollow Composites and Their Application to Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 25923-25926.	2.0	3
229	Interplay between solid-electrolyte interphase and (in)active LixSi inÂsilicon anode. Cell Reports Physical Science, 2021, 2, 100668.	5.6	42
230	Infinite-layer/perovskite oxide heterostructure-induced high-spin states in SrCuO _{/SrRuO₃ bilayer films. Materials Horizons, 2021, 8, 3468-3476.}	12.2	8
231	Discovery of Two Families of Vsb-Based Compounds with V-Kagome Lattice. Chinese Physics Letters, 2021, 38, 127102.	3.3	14
232	Ferromagnetic Enhancement in LaMnO ₃ Films with Release and Flexure (Adv. Mater.) Tj ETQq0 0 0	rgBT/Ove	rlogk 10 Tf 50
233	Dynamics of Anisotropic Oxygen-lon Migration in Strained Cobaltites. Nano Letters, 2021, 21, 10507-10515.	9.1	9
234	Wafer-Scale Epitaxy of Flexible Nitride Films with Superior Plasmonic and Superconducting Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60182-60191.	8.0	13

#	ARTICLE Magnetic Weyl Semimetallic Phase in Thin Films of <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
235	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mnow><mml:mnow></mml:mnow></mml:mnow></mml:mrow><mml:mnow></mml:mnow><th>nn: 2><th>ml7mn>irow></th></th></mml:mrow></mml:mrow></mml:mrow>	n n: 2> <th>ml7mn>irow></th>	m l7 mn>irow>
236	Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. National Science Review, 2020, 7, 27-36.	9.5	192
237	Palladium Single Atoms on TiO ₂ as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. Angewandte Chemie, 2020, 132, 238-242.	2.0	26
238	Lattice Distortion in Hollow Multiâ€Shelled Structures for Efficient Visibleâ€Light CO ₂ Reduction with a SnS ₂ /SnO ₂ Junction. Angewandte Chemie, 2020, 132, 731-734.	2.0	41
239	Palladium Single Atoms on TiO ₂ as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. Angewandte Chemie - International Edition, 2020, 59, 232-236.	13.8	103
240	Lattice Distortion in Hollow Multiâ€Shelled Structures for Efficient Visibleâ€Light CO ₂ Reduction with a SnS ₂ /SnO ₂ Junction. Angewandte Chemie - International Edition, 2020, 59, 721-724.	13.8	128
241	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2020, 132, 1311-1317.	2.0	59
242	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	13.8	344
243	In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass. Carbon, 2020, 157, 614-621.	10.3	64
244	Excellent long-term reactivity of inhomogeneous nanoscale Fe-based metallic glass in wastewater purification. Science China Materials, 2020, 63, 453-466.	6.3	22
245	Single Chromium Atoms Supported on Titanium Dioxide Nanoparticles for Synergic Catalytic Methane Conversion under Mild Conditions. Angewandte Chemie - International Edition, 2020, 59, 1216-1219.	13.8	98
246	Single Chromium Atoms Supported on Titanium Dioxide Nanoparticles for Synergic Catalytic Methane Conversion under Mild Conditions. Angewandte Chemie, 2020, 132, 1232-1235.	2.0	25
247	A Noble Metal Dichalcogenide for Highâ€Performance Fieldâ€Effect Transistors and Broadband Photodetectors. Advanced Functional Materials, 2020, 30, 1907945.	14.9	72
248	Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Research, 2020, 13, 265-272.	10.4	45
249	Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science, 2020, 11, 786-790.	7.4	110
250	Boosting fast energy storage by synergistic engineering of carbon and deficiency. Nature Communications, 2020, 11, 132.	12.8	92
251	Sulfur-terminated tin oxides for durable, highly reversible storage of large-capacity lithium. Journal of Materials Chemistry A, 2020, 8, 626-631.	10.3	11
252	Atomically Dispersed Co–P ₃ on CdS Nanorods with Electronâ€Rich Feature Boosts Photocatalysis. Advanced Materials, 2020, 32, e1904249.	21.0	105

#	Article	IF	Citations
253	lodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo ₆ S ₈ Nanosheets for Advanced Multivalent Batteries. ACS Nano, 2020, 14, 1102-1110.	14.6	72
254	Defectâ€Engineered Atomically Thin MoS ₂ Homogeneous Electronics for Logic Inverters. Advanced Materials, 2020, 32, e1906646.	21.0	94
255	Controlled Atomic Solubility in Mnâ€Rich Composite Material to Achieve Superior Electrochemical Performance for Liâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1902231.	19.5	17
256	Electrochemical approach towards the controllable synthesis of nickel nanocones based on the screw dislocation. Applied Nanoscience (Switzerland), 2020, 10, 1625-1638.	3.1	3
257	Boron-Rich Molybdenum Boride with Unusual Short-Range Vacancy Ordering, Anisotropic Hardness, and Superconductivity. Chemistry of Materials, 2020, 32, 459-467.	6.7	35
258	Realization of Monophased LaCoO x Films with Ordered Oxygen Vacancies. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900848.	1.8	5
259	Impact of the Coordination Environment on Atomically Dispersed Pt Catalysts for Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 907-913.	11.2	121
260	One-Step Transformation of Metal Meshes to Robust Superhydrophobic and Superoleophilic Meshes for Highly Efficient Oil Spill Cleanup and Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1850-1857.	8.0	73
261	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie, 2020, 132, 1735-1743.	2.0	40
262	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 1718-1726.	13.8	452
263	Surface coordination layer passivates oxidation of copper. Nature, 2020, 586, 390-394.	27.8	154
264	Zirconium Aided Epitaxial Growth of $\ln x$ Se y on $\ln P(111)$ Substrates. Chinese Physics Letters, 2020, 37, 087401.	3.3	2
265	Atomic heterointerfaces in La0.7Sr0.3MnO3/SrIrO3 superlattices. Materials Characterization, 2020, 169, 110597.	4.4	2
266	Stabilization of ferroelastic charged domain walls in self-assembled BiFeO3 nanoislands. Journal of Applied Physics, 2020, 128, 124103.	2.5	9
267	Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Research, 2020, 13, 3082-3087.	10.4	215
268	Alkali ions secure hydrides for catalytic hydrogenation. Nature Catalysis, 2020, 3, 703-709.	34.4	123
269	Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS ₂ . Journal of the American Chemical Society, 2020, 142, 4298-4308.	13.7	585
270	Fully Exploited Oxygen Redox Reaction by the Interâ€Diffused Cations in Coâ€Free Liâ€Rich Materials for High Performance Liâ€Ion Batteries. Advanced Science, 2020, 7, 2001658.	11.2	17

#	Article	IF	Citations
271	Lithium lanthanum titanate perovskite as an anode for lithium ion batteries. Nature Communications, 2020, 11, 3490.	12.8	121
272	Review of Deep Learning Approaches for the Segmentation of Multiple Sclerosis Lesions on Brain MRI. Frontiers in Neuroinformatics, 2020, 14, 610967.	2.5	51
273	High-rate cathode CrSSe based on anion reactions for lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 25739-25745.	10.3	17
274	Stacking Faults Hinder Lithium Insertion in Li ₂ RuO ₃ . Advanced Energy Materials, 2020, 10, 2002631.	19.5	22
275	Insulating SiO ₂ under Centimeter-Scale, Single-Crystal Graphene Enables Electronic-Device Fabrication. Nano Letters, 2020, 20, 8584-8591.	9.1	19
276	Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte Chemie, 2020, 132, 22276-22283.	2.0	15
277	A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane. Nano Research, 2020, 13, 2819-2827.	10.4	17
278	Large Switchable Photoconduction within 2D Potential Well of a Layered Ferroelectric Heterostructure. Advanced Materials, 2020, 32, e2003033.	21.0	19
279	Superiority of native vacancies in activating anionic redox in P2-type Na2/3[Mn7/9Mg1/9â-¡1/9]O2. Nano Energy, 2020, 78, 105172.	16.0	40
280	Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte Chemie - International Edition, 2020, 59, 22092-22099.	13.8	75
281	Metal Single Atom Strategy Greatly Boosts Photocatalytic Methyl Activation and C–C Coupling for the Coproduction of High-Value-Added Multicarbon Compounds and Hydrogen. ACS Catalysis, 2020, 10, 9109-9114.	11.2	47
282	Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nature Nanotechnology, 2020, 15, 848-853.	31.5	210
283	Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 2020, 20, 6852-6858.	9.1	25
284	Photocatalytic CO ₂ Reduction to CO over Ni Single Atoms Supported on Defectâ€Rich Zirconia. Advanced Energy Materials, 2020, 10, 2002928.	19.5	263
285	A facile strategy to produce monatomic tantalum metallic glass. Applied Physics Letters, 2020, 117, .	3.3	3
286	Negativeâ€Pressureâ€Induced Large Polarization in Nanosized PbTiO ₃ . Advanced Materials, 2020, 32, e2002968.	21.0	20
287	High performance and low thermal expansion in Er-Fe-V-Mo dual-phase alloys. Acta Materialia, 2020, 198, 271-280.	7.9	20
288	Simply Adjusting the Unidirectional Liquid Transport of Scalable Janus Membranes toward Moisture-Wicking Fabric, Rapid Demulsification, and Fast Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51102-51113.	8.0	51

#	Article	IF	Citations
289	Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Research, 2020, 13, 3206-3211.	10.4	45
290	Wafer-Scale Highly Oriented Monolayer MoS ₂ with Large Domain Sizes. Nano Letters, 2020, 20, 7193-7199.	9.1	160
291	Coupled Vacancy Pairs in Niâ€Doped CoSe for Improved Electrocatalytic Hydrogen Production Through Topochemical Deintercalation. Angewandte Chemie - International Edition, 2020, 59, 22743-22748.	13.8	157
292	Coupled Vacancy Pairs in Niâ€Doped CoSe for Improved Electrocatalytic Hydrogen Production Through Topochemical Deintercalation. Angewandte Chemie, 2020, 132, 22931-22936.	2.0	16
293	A Phosphorusâ€Doped Ag@Pd Catalyst for Enhanced CC Bond Cleavage during Ethanol Electrooxidation. Small, 2020, 16, e2004727.	10.0	59
294	Metalation of Catecholâ€Functionalized Defective Covalent Organic Frameworks for Lewis Acid Catalysis. Small, 2020, 16, e2001998.	10.0	43
295	Atomic Engineering Catalyzed MnO ₂ Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density. Advanced Materials, 2020, 32, e2001894.	21.0	221
296	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China Materials, 2020, 63, 972-981.	6.3	74
297	Mott gap engineering in Sr2lrO4/SrTiO3 superlattices. Science China Materials, 2020, 63, 1855-1860.	6.3	1
298	Low Lattice Mismatch InSe–Se Vertical Van der Waals Heterostructure for Highâ€performance Transistors via Strong Fermiâ€Level Depinning. Small Methods, 2020, 4, 2000238.	8.6	22
299	Fast and stable Mg2+ intercalation in a high voltage NaV2O2(PO4)2F/rGO cathode material for magnesium-ion batteries. Science China Materials, 2020, 63, 1651-1662.	6.3	36
300	Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Research, 2020, 13, 1970-1975.	10.4	32
301	Electric field controllable high-spin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>SrRu</mml:mi><mml:msub><mml:mathvariant="normal">O<mml:mn>3</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> driven by a solid ionic junction. Physical Review B. 2020. 101.	mi 3.2	19
302	Robust Ferromagnetism in Highly Strained <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	.8.9 nml:mn>3	<15 mml:mn>
303	Densely Isolated FeN ₄ Sites for Peroxidase Mimicking. ACS Catalysis, 2020, 10, 6422-6429.	11.2	216
304	Symmetry-Induced Emergent Electrochemical Properties for Rechargeable Batteries. Cell Reports Physical Science, 2020, 1, 100066.	5.6	6
305	An In Situ Formed Surface Coating Layer Enabling LiCoO ₂ with Stable 4.6 V Highâ€Voltage Cycle Performances. Advanced Energy Materials, 2020, 10, 2001413.	19.5	201
306	Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry, 2020, 12, 764-772.	13.6	452

#	Article	IF	Citations
307	Dualâ€Defects Adjusted Crystalâ€Field Splitting of LaCo _{1â^²<i>x</i>} Ni _{<i>x</i>} O _{3â^²<i>δ</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 19691-19695.	13.8	80
308	Nonvolatile ferroelectric field-effect transistors. Nature Communications, 2020, 11, 2811.	12.8	87
309	Snoek-type damping performance in strong and ductile high-entropy alloys. Science Advances, 2020, 6, eaba7802.	10.3	56
310	Ethylene Selectivity in Electrocatalytic CO ₂ Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study. Journal of the American Chemical Society, 2020, 142, 12760-12766.	13.7	183
311	Enabling reversible phase transition on K5/9Mn7/9Ti2/9O2 for high-performance potassium-ion batteries cathodes. Energy Storage Materials, 2020, 31, 20-26.	18.0	35
312	Constructing an Adaptive Heterojunction as a Highly Active Catalyst for the Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e2001292.	21.0	122
313	Switching Magnetic Anisotropy of <mmi:math 142,="" 2020,="" 7116-7127.<="" air="" american="" batteries="" chemical="" density.="" journal="" of="" power="" record="" society,="" td="" the="" with="" xmins:mmi="http://www.w3.org/1998/Math/Math/Mith/Mith/Mith/Mith/Mith/Mith/Mith/Mi</td><td>3.8</td><td>14</td></tr><tr><td>314</td><td>Two-Dimensional Amorphous SnO<sub><i>x</i></sub> from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO<sub>2</sub> Reduction toward Formic Acid. Nano Letters, 2020, 20, 2916-2922.</td><td>9.1</td><td>97</td></tr><tr><td>315</td><td>Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 2020, 13, 947-951.</td><td>10.4</td><td>65</td></tr><tr><td>316</td><td>Metalâ€organic frameworkâ€derived Fe/Cuâ€substituted Co nanoparticles embedded in CNTsâ€grafted carbon polyhedron for Znâ€air batteries. , 2020, 2, 283-293.</td><td></td><td>95</td></tr><tr><td>317</td><td>Spin reorientation at (110)-La2/3Sr1/3MnO3/LaCoO3 interfaces by orbital/charge reconstruction. APL Materials, 2020, 8, .</td><td>5.1</td><td>3</td></tr><tr><td>318</td><td>Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zincâ€"><td>13.7</td><td>147</td></mmi:math>	13.7	147
319	Integration of Metal Single Atoms on Hierarchical Porous Nitrogen-Doped Carbon for Highly Efficient Hydrogenation of Large-Sized Molecules in the Pharmaceutical Industry. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17651-17658.	8.0	27
320	Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15, 390-397.	31.5	420
321	Airâ€Stable Monolayer Cu ₂ Se Exhibits a Purely Thermal Structural Phase Transition. Advanced Materials, 2020, 32, e1908314.	21.0	26
322	Biomineral Precursor Formation Is Initiated by Transporting Calcium and Phosphorus Clusters from the Endoplasmic Reticulum to Mitochondria. Advanced Science, 2020, 7, 1902536.	11.2	27
323	Highâ€Performance Optoelectronics: Lateral 2D WSe ₂ p–n Homojunction Formed by Efficient Chargeâ€Carrierâ€Type Modulation for Highâ€Performance Optoelectronics (Adv. Mater. 9/2020). Advanced Materials, 2020, 32, 2070067.	21.0	2
324	Dualâ€Defects Adjusted Crystalâ€Field Splitting of LaCo _{1â^²<i>x</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie, 2020, 132, 19859-19863.	2.0	5

#	Article	IF	CITATIONS
325	Origin of functionality for functional materials at atomic scale. Nano Select, 2020, 1, 183-199.	3.7	12
326	Emergent superconductivity in single-crystalline <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MgTi</mml:mi><mm mathvariant="normal">O<mml:mn>4</mml:mn></mm></mml:msub></mml:mrow></mml:math> films via structural engineering. Physical Review B, 2020, 101, .	l:mn>2 <td>nml;mn></td>	nml;mn>
327	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 17865-17871.	2.0	24
328	Hybrid Aqueous Batteries: Atomic Engineering Catalyzed MnO ₂ Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density (Adv. Mater. 25/2020). Advanced Materials, 2020, 32, 2070191.	21.0	3
329	A Porous Mooncakeâ€Shaped Li ₄ Ti ₅ O ₁₂ Anode Material Modified by SmF ₃ and Its Electrochemical Performance in Lithium Ion Batteries. Chemistry - A European Journal, 2020, 26, 17097-17102.	3.3	7
330	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 17712-17718.	13.8	53
331	Bulletâ€Shaped Magnetite Biomineralization Within a Magnetotactic Deltaproteobacterium: Implications for Magnetofossil Identification. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005680.	3.0	32
332	Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Metals, 2020, 39, 205-217.	7.1	94
333	Insights into the role of an Fe–N active site in the oxygen reduction reaction on carbon-supported supramolecular catalysts. RSC Advances, 2020, 10, 8709-8716.	3.6	11
334	Advanced characterization and calculation methods for rechargeable battery materials in multiple scales. Chinese Physics B, 2020, 29, 028801.	1.4	1
335	Growth of High-Quality Superconducting FeSe _{0.5} Te _{0.5} Films on Pb(Mg _{1/3} Nb _{2/3}) _{0.7} Ti _{0.3} O ₃ and Electric-Field Modulation of Superconductivity. ACS Applied Materials & Diterfaces, 2020, 12, 12238-12245.	8.0	9
336	Evidence of the enhanced negative thermal expansion in (1 \hat{a}^{*} x)PbTiO3-xBi(Zn2/3Ta1/3)O3. Inorganic Chemistry Frontiers, 2020, 7, 1284-1288.	6.0	6
337	Electrochemistry Induced Giant and Reversible Deformation in Oxides. Advanced Functional Materials, 2020, 30, 1908826.	14.9	2
338	Uncovering the Potential of M1â€Siteâ€Activated NASICON Cathodes for Znâ€Ion Batteries. Advanced Materials, 2020, 32, e1907526.	21.0	103
339	Cascade Reaction System Integrating Single-Atom Nanozymes with Abundant Cu Sites for Enhanced Biosensing. Analytical Chemistry, 2020, 92, 3373-3379.	6.5	185
340	Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. CheM, 2020, 6, 725-737.	11.7	87
341	Interfacial Control of Ferromagnetism in Ultrathin SrRuO ₃ Films Sandwiched between Ferroelectric BaTiO ₃ Layers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6707-6715.	8.0	16
342	A Freestanding Flexible Singleâ€Atom Cobaltâ€Based Multifunctional Interlayer toward Reversible and Durable Lithiumâ€Sulfur Batteries. Small Methods, 2020, 4, 1900701.	8.6	123

#	Article	IF	Citations
343	Eliminating Transition Metal Migration and Anionic Redox to Understand Voltage Hysteresis of Lithiumâ€Rich Layered Oxides. Advanced Energy Materials, 2020, 10, 1903634.	19.5	45
344	Lateral 2D WSe ₂ p–n Homojunction Formed by Efficient Chargeâ€Carrierâ€Type Modulation for Highâ€Performance Optoelectronics. Advanced Materials, 2020, 32, e1906499.	21.0	103
345	Ultrasmall Pdâ€Cuâ€Pt Trimetallic Twin Icosahedrons Boost the Electrocatalytic Performance of Glycerol Oxidation at the Operating Temperature of Fuel Cells. Advanced Functional Materials, 2020, 30, 1908235.	14.9	89
346	A Photoactivated Cu–CeO ₂ Catalyst with Cuâ€{O]â€Ce Active Species Designed through MOF Crystal Engineering. Angewandte Chemie - International Edition, 2020, 59, 8203-8209.	13.8	26
347	Hydrogen Stabilized RhPdH 2D Bimetallene Nanosheets for Efficient Alkaline Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 3645-3651.	13.7	152
348	Bifunctional Photoelectrode Driven by Charged Domain Walls in Ferroelectric Bi ₂ WO ₆ . ACS Applied Energy Materials, 2020, 3, 4149-4154.	5.1	19
349	Highly Reversible Cuprous Mediated Cathode Chemistry for Magnesium Batteries. Angewandte Chemie - International Edition, 2020, 59, 11477-11482.	13.8	67
350	Deterministic reversal of single magnetic vortex circulation by an electric field. Science Bulletin, 2020, 65, 1260-1267.	9.0	21
351	Real-Time Visualization of Solid-Phase Ion Migration Kinetics on Nanowire Monolayer. Journal of the American Chemical Society, 2020, 142, 7968-7975.	13.7	10
352	Fe-doped Co ₃ O ₄ polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc–air batteries. Chemical Communications, 2020, 56, 5374-5377.	4.1	36
353	Engineering Mo/Mo ₂ C/MoC hetero-interfaces for enhanced electrocatalytic nitrogen reduction. Journal of Materials Chemistry A, 2020, 8, 8920-8926.	10.3	54
354	Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. National Science Review, 2020, 7, 1638-1646.	9.5	57
355	Highâ€Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Singleâ€Atom Catalysts with Tetradentate N ₂ O ₂ Coordination in a Threeâ€Phase Flow Cell. Angewandte Chemie, 2020, 132, 13157-13162.	2.0	16
356	Highâ€Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Singleâ€Atom Catalysts with Tetradentate N ₂ O ₂ Coordination in a Threeâ€Phase Flow Cell. Angewandte Chemie - International Edition, 2020, 59, 13057-13062.	13.8	222
357	Preparation and Characterization of Nitrogen-Riched Polymer Based Materials and the Role of Cu–N Active Site in Promoting the ORR Activity of the Catalyst. Catalysis Surveys From Asia, 2020, 24, 219-231.	2.6	6
358	A selective control of volatile and non-volatile superconductivity in an insulating copper oxide via ionic liquid gating. Science Bulletin, 2020, 65, 1607-1613.	9.0	10
359	A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy and Environmental Science, 2020, 13, 1269-1278.	30.8	39
360	Anomalous Hall effect in a magnetically extended topological insulator heterostructure. Physical Review Materials, 2020, 4, .	2.4	1

#	Article	IF	Citations
361	Controllable synthesis and electronic structure characterization of multiple phases of iron telluride thin films. Physical Review Materials, 2020, 4, .	2.4	11
362	Dialectical Observation of Controllable Electrodeposited Ni Nanocones: the Unification of Local Disorder and Overall Order. Nanoscale Research Letters, 2020, 15, 91.	5.7	4
363	The Synthesis of Sub-Nano-Thick Pd Nanobelt–Based Materials for Enhanced Hydrogen Evolution Reaction Activity. CCS Chemistry, 2020, 2, 642-654.	7.8	14
364	The Synthesis of Sub-Nano-Thick Pd Nanobelt–Based Materials for Enhanced Hydrogen Evolution Reaction Activity. CCS Chemistry, 2020, 2, 642-654.	7.8	7
365	Defect-Rich, Candied Haws-Shaped AuPtNi Alloy Nanostructures for Highly Efficient Electrocatalysis. CCS Chemistry, 2020, 2, 24-30.	7.8	23
366	Carbon Monoxide Promotes the Catalytic Hydrogenation on Metal Cluster Catalysts. Research, 2020, 2020, 4172794.	5.7	14
367	Intermetallic Cu ₅ Zr Clusters Anchored on Hierarchical Nanoporous Copper as Efficient Catalysts for Hydrogen Evolution Reaction. Research, 2020, 2020, 2987234.	5.7	21
368	High‥ield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie, 2019, 131, 756-760.	2.0	10
369	Enhancements of dielectric and energy storage performances in leadâ€free films with sandwich architecture. Journal of the American Ceramic Society, 2019, 102, 936-943.	3.8	37
370	A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution. Science China Materials, 2019, 62, 115-121.	6.3	16
371	Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Materials, 2019, 16, 220-227.	18.0	144
372	Enhanced high permittivity and lowed dielectric loss in cellulose–fiber framework polymer microcomposites. Polymer Composites, 2019, 40, 1526-1535.	4.6	3
373	Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 20952-20957.	10.3	117
374	Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science, 2019, 365, 578-582.	12.6	662
375	Electric Field–Controlled Multistep Proton Evolution in H <i>_x</i> SrCoO _{2.5} with Formation of H–H Dimer. Advanced Science, 2019, 6, 1901432.	11.2	32
376	Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nature Communications, 2019, 10, 3787.	12.8	119
377	Disorder-induced multifractal superconductivity in monolayer niobium dichalcogenides. Nature Physics, 2019, 15, 904-910.	16.7	86
378	Highâ€Throughput Production of Zrâ€Doped Li 4 Ti 5 O 12 Modified by Mesoporous Libaf 3 Nanoparticles for Superior Lithium and Potassium Storage. Chemistry - an Asian Journal, 2019, 14, 3181-3187.	3.3	9

#	Article	IF	Citations
379	CoSe2 nanoparticles embedded MOF-derived Co-N-C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 258, 117996.	20.2	162
380	Aging amorphous/crystalline heterophase PdCu nanosheets for catalytic reactions. National Science Review, 2019, 6, 955-961.	9.5	75
381	Intercalating Anions between Terminated Anion Layers: Unusual Ionic S–Se Bonds and Hole-Doping Induced Superconductivity in S0.24(NH3)0.26Fe2Se2. Journal of the American Chemical Society, 2019, 141, 13849-13857.	13.7	22
382	Single molecule–mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. Science Advances, 2019, 5, eaax1081.	10.3	61
383	Energy state and properties controlling of metallic glasses by surface rejuvenation. Intermetallics, 2019, 112, 106549.	3.9	3
384	Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations. Nature Communications, 2019, 10, 2911.	12.8	90
385	A novel Y7O6F9 modified Li4Ti5O12 composite with the effect of inhibiting electrolyte decomposition for lithium ion batteries. Solid State Ionics, 2019, 340, 115008.	2.7	3
386	Electronic Structure of a Graphene-like Artificial Crystal of NdNiO ₃ . Nano Letters, 2019, 19, 8311-8317.	9.1	7
387	Interface-engineered hole doping in Sr ₂ IrO ₄ /LaNiO ₃ heterostructure. New Journal of Physics, 2019, 21, 103009.	2.9	5
388	Tuning Oxygen Redox Chemistry in Liâ€Rich Mnâ€Based Layered Oxide Cathodes by Modulating Cation Arrangement. Advanced Materials, 2019, 31, e1901808.	21.0	86
389	Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds. Advanced Materials, 2019, 31, e1904496.	21.0	114
390	Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS ₂ Arrays for Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 16289-16296.	13.8	201
391	High Phaseâ€Purity 1Tâ€MoS ₂ Ultrathin Nanosheets by a Spatially Confined Template. Angewandte Chemie - International Edition, 2019, 58, 17621-17624.	13.8	109
392	Emerging ferromagnetic phase in self-assembled mixed valence manganite nanowires. Applied Physics Letters, 2019, 115, 162405.	3.3	0
393	A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10, 4585.	12.8	441
394	Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy, 2019, 66, 104173.	16.0	116
395	Singleâ€Atom Catalysts: Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds (Adv. Mater. 44/2019). Advanced Materials, 2019, 31, 1970316.	21.0	1
396	Regulating Pore Structure of Hierarchical Porous Waste Corkâ€Derived Hard Carbon Anode for Enhanced Na Storage Performance. Advanced Energy Materials, 2019, 9, 1902852.	19.5	212

#	Article	IF	CITATIONS
397	Spectrum-Quantified Morphological Evolution of Enzyme-Protected Silver Nanotriangles by DNA-Guided Postshaping. Journal of the American Chemical Society, 2019, 141, 19533-19537.	13.7	11
398	A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie, 2019, 131, 18559-18564.	2.0	20
399	A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie - International Edition, 2019, 58, 18388-18393.	13.8	69
400	Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS 2 Arrays for Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 16435-16442.	2.0	16
401	High Phaseâ€Purity 1Tâ€MoS 2 Ultrathin Nanosheets by a Spatially Confined Template. Angewandte Chemie, 2019, 131, 17785-17788.	2.0	67
402	Fieldâ€Effect Transistors: A Facile and Effective Method for Patching Sulfur Vacancies of WS ₂ via Nitrogen Plasma Treatment (Small 36/2019). Small, 2019, 15, 1970195.	10.0	0
403	Interstitial Hydrogen Atom Modulation to Boost Hydrogen Evolution in Pd-Based Alloy Nanoparticles. ACS Nano, 2019, 13, 12987-12995.	14.6	67
404	Anisotropic Growth and Scanning Tunneling Microscopy Identification of Ultrathin Even‣ayered PdSe ₂ Ribbons. Small, 2019, 15, e1902789.	10.0	50
405	Structure and electronic structure of functional materials under symmetric breaking. Microscopy and Microanalysis, 2019, 25, 2062-2063.	0.4	0
406	Elemental Segregation in Multimetallic Core–Shell Nanoplates. Journal of the American Chemical Society, 2019, 141, 14496-14500.	13.7	46
407	Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nature Communications, 2019, 10, 3844.	12.8	121
408	High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy, 2019, 66, 104088.	16.0	138
409	Supramolecular Iron Complex Formed Between Nitrogen Riched Phenanthroline Derivative and Iron With Improved Oxygen Reduction Activity in Alkaline Electrolyte. Frontiers in Chemistry, 2019, 7, 622.	3.6	6
410	Butterfly-wing hierarchical metallic glassy nanostructure for surface enhanced Raman scattering. Nano Research, 2019, 12, 2808-2814.	10.4	14
411	Scalable Production of Two-Dimensional Metallic Transition Metal Dichalcogenide Nanosheet Powders Using NaCl Templates toward Electrocatalytic Applications. Journal of the American Chemical Society, 2019, 141, 18694-18703.	13.7	56
412	Interfacial charge-transfer Mott state in iridate–nickelate superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19863-19868.	7.1	31
413	Multiferroic Metal–PbNb _{0.12} Ti _{0.88} O _{3â^îÎ} Films on Nb-Doped STO. ACS Applied Electronic Materials, 2019, 1, 2109-2115.	4.3	13
414	Nickel/cobalt metal-organic framework derived 1D hierarchical NiCo2O4/NiO/carbon nanofibers for advanced sodium storage. Chemical Engineering Journal, 2019, 364, 123-131.	12.7	73

#	Article	IF	Citations
415	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie - International Edition, 2019, 58, 4323-4327.	13.8	114
416	Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie, 2019, 131, 4367-4371.	2.0	13
417	Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation. Advanced Materials, 2019, 31, e1807898.	21.0	215
418	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 2019, 141, 9305-9311.	13.7	191
419	A Facile and Effective Method for Patching Sulfur Vacancies of WS ₂ via Nitrogen Plasma Treatment. Small, 2019, 15, e1901791.	10.0	48
420	Magnetoresistance in Metallic Ferroelectrics. ACS Applied Electronic Materials, 2019, 1, 1225-1232.	4.3	4
421	A Nanozyme with Photoâ€Enhanced Dual Enzymeâ€Like Activities for Deep Pancreatic Cancer Therapy. Angewandte Chemie, 2019, 131, 12754-12761.	2.0	71
422	A Nanozyme with Photoâ€Enhanced Dual Enzymeâ€Like Activities for Deep Pancreatic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 12624-12631.	13.8	345
423	Prominent role of chemical heterogeneity on cryogenic rejuvenation and thermomechanical properties of La–Al–Ni metallic glass. Intermetallics, 2019, 111, 106497.	3.9	40
424	Probing the Structural Transition Kinetics and Charge Compensation of the P2-Na _{0.78} Al _{0.05} Ni _{0.33} Mn _{0.60} O ₂ Cathode for Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24122-24131.	8.0	51
425	Crystal structures and sign reversal Hall resistivities in iron-based superconductors Li x (C3H10N2)0.32FeSe \$(0.15lt xlt 0.4\$). Chinese Physics B, 2019, 28, 067401.	1.4	3
426	Experimental Realization of an Intrinsic Magnetic Topological Insulator (sup)*. Chinese Physics Letters, 2019, 36, 076801.	3.3	457
427	Aluminosilicate Nanotubes Embedded Polyamide Thin Film Nanocomposite Forward Osmosis Membranes with Simultaneous Enhancement of Water Permeability and Selectivity. Polymers, 2019, 11, 879.	4.5	16
428	Electrolyteâ€Gated Synaptic Transistor with Oxygen Ions. Advanced Functional Materials, 2019, 29, 1902702.	14.9	103
429	Emergent Topological Hall Effect in La _{0.7} Sr _{0.3} MnO ₃ /SrlrO ₃ Heterostructures. ACS Applied Materials & Description of the control	8.0	35
430	Nanoporous Palladium–Silver Surface Alloys as Efficient and pH-Universal Catalysts for the Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 1379-1386.	17.4	72
431	An electrochemical approach towards the controllable synthesis of highly ordered and hierarchical zinc oxide dendritic crystals composed of hexagonal nanosheets: some insights into the stacking-assembly of the hierarchical architecture. CrystEngComm, 2019, 21, 3919-3929.	2.6	5
432	Generating Defectâ€Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie - International Edition, 2019, 58, 9464-9469.	13.8	226

#	Article	IF	Citations
433	Generating Defectâ€Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie, 2019, 131, 9564-9569.	2.0	47
434	Suppression of Monoclinic Phase Transitions of O3-Type Cathodes Based on Electronic Delocalization for Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22067-22073.	8.0	48
435	Stereodefined Codoping of sp-N and S Atoms in Few-Layer Graphdiyne for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 7240-7244.	13.7	198
436	Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Science China Materials, 2019, 62, 1306-1314.	6.3	44
437	Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nature Communications, 2019, 10, 1966.	12.8	48
438	Real-space observation of charge ordering in epitaxial La2â^'xSrxCuO4 films. Npj Quantum Materials, 2019, 4, .	5.2	2
439	Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nature Communications, 2019, 10, 1278.	12.8	591
440	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019, 141, 4505-4509.	13.7	285
441	Lattice dynamics of mixed-phase <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3<td>nl:m3.72> <td>mងmsub><</td></td></mml:mn></mml:msub></mml:math>	n l:m3.72> <td>mងmsub><</td>	m ង msub><
442	Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries. Journal of the American Chemical Society, 2019, 141, 4900-4907.	13.7	83
443	Rational Design of Atomic Layers of Pt Anchored on Mo ₂ C Nanorods for Efficient Hydrogen Evolution over a Wide pH Range. Small, 2019, 15, e1900014.	10.0	52
444	A Stable Layered Oxide Cathode Material for Highâ€Performance Sodiumâ€ion Battery. Advanced Energy Materials, 2019, 9, 1803978.	19.5	191
445	Unveiling the Layerâ€Dependent Catalytic Activity of PtSe ₂ Atomic Crystals for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 6977-6981.	13.8	76
446	Electronic structure evolutions driven by oxygen vacancy in SrCoO3â°'x films. Science China Materials, 2019, 62, 1162-1168.	6.3	27
447	A Ferrite Synaptic Transistor with Topotactic Transformation. Advanced Materials, 2019, 31, e1900379.	21.0	134
448	Edgeâ€Exposed Molybdenum Disulfide with Nâ€Doped Carbon Hybridization: A Hierarchical Hollow Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2019, 9, 1900072.	19.5	62
449	Fabrication and characterization of cellulose triacetate porous membranes by combined nonsolvent-thermally induced phase separation. Cellulose, 2019, 26, 3747-3762.	4.9	12
450	2D Electron Gas and Oxygen Vacancy Induced High Oxygen Evolution Performances for Advanced Co ₃ O ₄ /CeO ₂ Nanohybrids. Advanced Materials, 2019, 31, e1900062.	21.0	242

#	Article	IF	CITATIONS
451	Tuning Photovoltaic Performance of Perovskite Nickelates Heterostructures by Changing the A-Site Rare-Earth Element. ACS Applied Materials & Interfaces, 2019, 11, 16191-16197.	8.0	16
452	An Electrolytic Zn–MnO ₂ Battery for Highâ€Voltage and Scalable Energy Storage. Angewandte Chemie, 2019, 131, 7905-7910.	2.0	114
453	Simultaneous synthesis and integration of two-dimensional electronic components. Nature Electronics, 2019, 2, 164-170.	26.0	95
454	Inâ€Plane Anisotropic Properties of 1T′â€MoS ₂ Layers. Advanced Materials, 2019, 31, e1807764.	21.0	55
455	An Electrolytic Zn–MnO ₂ Battery for Highâ€Voltage and Scalable Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 7823-7828.	13.8	787
456	Superconductivity above 28 K in single unit cell FeSe films interfaced with GaO2â^' layer on NdGaO3(1 1 O Science Bulletin, 2019, 64, 490-494.	9.0	8
457	Pressure-mediated contact quality improvement between monolayer MoS ₂ and graphite. Chinese Physics B, 2019, 28, 017301.	1.4	5
458	Unveiling the Layerâ€Dependent Catalytic Activity of PtSe ₂ Atomic Crystals for the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 7051-7055.	2.0	37
459	Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Research, 2019, 12, 1173-1179.	10.4	65
460	A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Advanced Materials, 2019, 31, e1806781.	21.0	95
461	Disorder in Mn+1AXn phases at the atomic scale. Nature Communications, 2019, 10, 622.	12.8	41
462	Improved oxygen evolution activity of IrO $<$ sub $>$ 2 $<$ /sub $>$ by $<$ i $>$ in situ $<$ /i $>$ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. Nanoscale, 2019, 11, 4407-4413.	5.6	105
463	Hollow Multiâ€Shelled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 5266-5271.	13.8	102
464	High Rate Li-Ion Batteries with Cation-Disordered Cathodes. Joule, 2019, 3, 1064-1079.	24.0	12
465	Hollow Multiâ€Shelled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie, 2019, 131, 5320-5325.	2.0	15
466	Frontispiz: A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie, 2019, 131, .	2.0	0
467	Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nature Communications, 2019, 10, 5231.	12.8	371
468	Tuning Surface Lattice Strain toward a Pt–Skin CoPt _{<i>x</i>} Truncated Octahedron for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 29722-29728.	3.1	15

#	Article	IF	CITATIONS
469	Activating MoS ₂ basal planes for hydrogen evolution through direct CVD morphology control. Journal of Materials Chemistry A, 2019, 7, 27603-27611.	10.3	24
470	Disorder-insensitivity of room-temperature giant permittivity in Ca4 â^' xCuxTi4O12 (x = 3, 2 an polycrystalline ceramics. Journal of Applied Physics, 2019, 126, .	d_1) 2.3	7
471	Self-assembly growth of a multiferroic topological nanoisland array. Nanoscale, 2019, 11, 20514-20521.	5.6	13
472	Intercalation-Mediated Synthesis and Interfacial Coupling Effect Exploration of Unconventional Graphene/PtSe ₂ Vertical Heterostructures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48221-48229.	8.0	7
473	Synthesis of PdM (M = Zn, Cd, ZnCd) Nanosheets with an Unconventional Face-Centered Tetragonal Phase as Highly Efficient Electrocatalysts for Ethanol Oxidation. ACS Nano, 2019, 13, 14329-14336.	14.6	133
474	c-axis superconducting performance enhancement in Co-doped Ba122 thin films by an artificial pinning center design. Superconductor Science and Technology, 2019, 32, 125014.	3.5	5
475	Artificial Spider Silk: Scalable Spiderâ€Silkâ€Like Supertough Fibers using a Pseudoprotein Polymer (Adv.) Tj ETQq	1 1 0.784: 21.0	314 rgBT /0
476	A general synthesis approach for amorphous noble metal nanosheets. Nature Communications, 2019, 10, 4855.	12.8	321
477	Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature, 2019, 574, 223-227.	27.8	874
478	Oxygen vacancy modulated superconductivity in monolayer FeSe on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>SrTi</mml:mi><mml:msub><mml:m mathvariant="normal">O<mml:mrow><mml:mn>3</mml:mn><mml:mo>â^'</mml:mo><mml:mi>Î'<td>ារ្វែ ពរី:mi><td>ıml:mrow><</td></td></mml:mi></mml:mrow></mml:m></mml:msub></mml:mrow></mml:math>	ារ្វែ ពរី:mi> <td>ıml:mrow><</td>	ıml:mrow><
479	Frontispiece: A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie - International Edition, 2019, 58, .	13.8	1
480	A dinuclear cobalt cluster as electrocatalyst for oxygen reduction reaction. RSC Advances, 2019, 9, 42554-42560.	3.6	7
481	Hidden metal-insulator transition in manganites synthesized via a controllable oxidation. Science China Materials, 2019, 62, 577-585.	6.3	9
482	Epitaxial Growth of Two-Dimensional Metal–Semiconductor Transition-Metal Dichalcogenide Vertical Stacks (VSe ₂ /MX ₂) and Their Band Alignments. ACS Nano, 2019, 13, 885-893.	14.6	102
483	Design of highly thermal-shock resistant tungsten alloys with nanoscaled intra- and inter-type K bubbles. Journal of Alloys and Compounds, 2019, 782, 149-159.	5.5	28
484	Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Research, 2019, 12, 2211-2217.	10.4	34
485	Iridium-Triggered Phase Transition of MoS ₂ Nanosheets Boosts Overall Water Splitting in Alkaline Media. ACS Energy Letters, 2019, 4, 368-374.	17.4	105
486	Anionic Redox Reaction-Induced High-Capacity and Low-Strain Cathode with Suppressed Phase Transition. Joule, 2019, 3, 503-517.	24.0	262

#	Article	lF	CITATIONS
487	Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nature Communications, 2019, 10, 73.	12.8	291
488	Hollow Multishelled Structure of Heterogeneous Co ₃ O ₄ –CeO _{2â^'} <i>_x</i> Nanocomposite for CO Catalytic Oxidation. Advanced Functional Materials, 2019, 29, 1806588.	14.9	86
489	In-situ synthesis, operation and regeneration of nanoporous silver with high performance toward oxygen reduction reaction. Nano Energy, 2019, 58, 69-77.	16.0	27
490	Phaseâ€Controlled Synthesis of 1Tâ€MoSe ₂ /NiSe Heterostructure Nanowire Arrays via Electronic Injection for Synergistically Enhanced Hydrogen Evolution. Small Methods, 2019, 3, 1800317.	8.6	67
491	Facile access to shape-controlled growth of WS ₂ monolayer via environment-friendly method. 2D Materials, 2019, 6, 015007.	4.4	18
492	Rational Design of Fe–N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catalysis, 2019, 9, 336-344.	11.2	278
493	High‥ield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie - International Edition, 2019, 58, 746-750.	13.8	79
494	3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries. Nano Energy, 2019, 56, 463-472.	16.0	94
495	Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness. Advanced Energy Materials, 2019, 9, 1803087.	19.5	70
496	Carbonâ€Supported Divacancyâ€Anchored Platinum Singleâ€Atom Electrocatalysts with Superhigh Pt Utilization for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 1175-1179.	2.0	73
497	Carbonâ€Supported Divacancyâ€Anchored Platinum Singleâ€Atom Electrocatalysts with Superhigh Pt Utilization for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 1163-1167.	13.8	252
498	Synthesis of MoX2 (X = Se or S) monolayers with high-concentration $1T\hat{a}\in^2$ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Research, 2019, 12, 1301-1305.	10.4	44
499	Fewâ€Layer Bismuthene with Anisotropic Expansion for Highâ€Arealâ€Capacity Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1807874.	21.0	165
500	Maximization of ferromagnetism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>LaCo</mml:mi><mml:msub><mml:mathvariant="normal">O<mml:mn>3</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> films by competing symmetry. Physical Review Materials, 2019, 3, .	mi 2.4	13
501	Cu2O-Supported Atomically Dispersed Pd Catalysts for Semihydrogenation of Terminal Alkynes: Critical Role of Oxide Supports. CCS Chemistry, 2019, 1, 207-214.	7.8	41
502	Giant Valley Coherence at Room Temperature in 3R WS ₂ with Broken Inversion Symmetry. Research, 2019, 2019, 6494565.	5.7	17
503	Synergistic O ²⁻ /Li ⁺ Dual Ion Transportation at Atomic Scale. Research, 2019, 2019, 9087386.	5.7	3
504	Synergistic O ²⁻ /Li ⁺ Dual Ion Transportation at Atomic Scale. Research, 2019, 2019, 1-8.	5.7	3

#	Article	IF	Citations
505	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 4642-4646.	13.8	93
506	Surface Oxidation of AuNi Heterodimers to Achieve High Activities toward Hydrogen/Oxygen Evolution and Oxygen Reduction Reactions. Small, 2018, 14, e1703749.	10.0	60
507	Boosting Interfacial Interaction in Hierarchical Core–Shell Nanostructure for Highly Effective Visible Photocatalytic Performance. Journal of Physical Chemistry C, 2018, 122, 6137-6143.	3.1	15
508	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Metal Isolatedâ€Singleâ€Atomicâ€Site Catalysts. Advanced Materials, 2018, 30, e1706508.	21.0	266
509	Vertical 1Tâ€TaS ₂ Synthesis on Nanoporous Gold for Highâ€Performance Electrocatalytic Applications. Advanced Materials, 2018, 30, e1705916.	21.0	75
510	Manipulating the Structural and Electronic Properties of Epitaxial SrCoO _{2.5} Thin Films by Tuning the Epitaxial Strain. ACS Applied Materials & Strain St	8.0	31
511	Intracystic papillary carcinoma of the breast: Experience of a major Chinese cancer center. Pathology Research and Practice, 2018, 214, 579-585.	2.3	8
512	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie, 2018, 130, 4732-4736.	2.0	29
513	Interface charges boosted ultrafast lithiation in Li4Ti5O12 revealed by in-situ electron holography. Journal of Energy Chemistry, 2018, 27, 1397-1401.	12.9	20
514	Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications, 2018, 9, 1002.	12.8	255
515	Na ⁺ /vacancy disordering promises high-rate Na-ion batteries. Science Advances, 2018, 4, eaar6018.	10.3	341
516	Interconversion between KSc ₂ F ₇ :Yb/Er and K ₂ NaScF ₆ :Yb/Er nanocrystals: the role of chemistry. Dalton Transactions, 2018, 47, 4950-4958.	3.3	10
517	Electrochemical Oscillation in Li-Ion Batteries. Joule, 2018, 2, 1265-1277.	24.0	44
518	An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy, 2018, 48, 448-455.	16.0	97
519	Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides. Nature Communications, 2018, 9, 1375.	12.8	98
520	Advanced Characterization Techniques for Sodiumâ€lon Battery Studies. Advanced Energy Materials, 2018, 8, 1702588.	19.5	122
521	Controllable synthesis of bioâ€based polylactide diols using an organocatalyst in solventâ€free conditions. Journal of Polymer Science Part A, 2018, 56, 968-976.	2.3	7
522	Recyclable bioâ€based crosslinked polyurethanes with selfâ€healing ability. Journal of Applied Polymer Science, 2018, 135, 46272.	2.6	32

#	Article	IF	Citations
523	Reconstruction-stabilized epitaxy of LaCoO3/SrTiO3(111) heterostructures by pulsed laser deposition. Applied Physics Letters, 2018, 112, .	3.3	15
524	Zirconium–Porphyrinâ€Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Nobleâ€Metal Single Atoms. Angewandte Chemie, 2018, 130, 3551-3556.	2.0	102
525	Zirconium–Porphyrinâ€Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Nobleâ€Metal Single Atoms. Angewandte Chemie - International Edition, 2018, 57, 3493-3498.	13.8	341
526	Ru Modulation Effects in the Synthesis of Unique Rod-like Ni@Ni ₂ P–Ru Heterostructures and Their Remarkable Electrocatalytic Hydrogen Evolution Performance. Journal of the American Chemical Society, 2018, 140, 2731-2734.	13.7	326
527	Strain Engineering to Enhance the Electrooxidation Performance of Atomic-Layer Pt on Intermetallic Pt ₃ Ga. Journal of the American Chemical Society, 2018, 140, 2773-2776.	13.7	193
528	Enhancing the Catalytic Activity of Co ₃ O ₄ for Li–O ₂ Batteries through the Synergy of Surface/Interface/Doping Engineering. ACS Catalysis, 2018, 8, 1955-1963.	11.2	111
529	Design Nitrogen (N) and Sulfur (S) Coâ€Doped 3D Graphene Network Architectures for Highâ€Performance Sodium Storage. Small, 2018, 14, 1703471.	10.0	71
530	Mimic the Photosystem II for Water Oxidation in Neutral Solution: A Case of Co ₃ O ₄ . Advanced Energy Materials, 2018, 8, 1702313.	19.5	18
531	Preparation of Highâ€Percentage 1Tâ€Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, 1705509.	21.0	341
532	Highâ€Capacity Cathode Material with High Voltage for Liâ€lon Batteries. Advanced Materials, 2018, 30, 1705575.	21.0	333
533	An Unusual Strong Visibleâ€Light Absorption Band in Red Anatase TiO ₂ Photocatalyst Induced by Atomic Hydrogenâ€Occupied Oxygen Vacancies. Advanced Materials, 2018, 30, 1704479.	21.0	231
534	Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1800588.	21.0	511
535	Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy, 2018, 49, 453-459.	16.0	40
536	The promoting effect of low-level sulfidation in PdCuS nanoparticles catalyzed alkyne semihydrogenation. Nano Research, 2018, 11, 4883-4889.	10.4	6
537	Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chemical Communications, 2018, 54, 4274-4277.	4.1	166
538	In Situ Generation of Bifunctional, Efficient Fe-Based Catalysts from Mackinawite Iron Sulfide for Water Splitting. CheM, 2018, 4, 1139-1152.	11.7	271
539	Quantum oscillations and Dirac dispersion in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BaZnBi</mml:mi><mml:mn>2<td> ml312n><td>nml&msub><</td></td></mml:mn></mml:msub></mml:math>	 ml 312 n> <td>nml&msub><</td>	nml&msub><
540	High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10, 638-643.	13.6	757

#	Article	IF	CITATIONS
541	Exceptionally High Performance Anode Material Based on Lattice Structure Decorated Double Perovskite Sr ₂ FeMo _{2/3} Mg _{1/3} O _{6â^'} <i>_{i'}</i> for Solid Oxide Fuel Cells. Advanced Energy Materials, 2018, 8, 1800062.	19.5	62
542	Robust spin-valley polarization in commensurate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> /graphene heterostructures. Physical Review B, 2018, 97, .	i 3.2	27
543	Electrolytic approach towards the controllable synthesis of NiO nanocrystalline and self-assembly mechanism of Ni(OH) ₂ precursor under electric, temperature and magnetic fields. CrystEngComm, 2018, 20, 2384-2395.	2.6	10
544	A vicinal effect for promoting catalysis of Pd1/TiO2: supports of atomically dispersed catalysts play more roles than simply serving as ligands. Science Bulletin, 2018, 63, 675-682.	9.0	80
545	High Br [–] Content CsPb(Cl _{<i>y</i>} Br _{1–<i>y</i>}) ₃ Perovskite Nanocrystals with Strong Mn ²⁺ Emission through Diverse Cation/Anion Exchange Engineering. ACS Applied Materials & Diverse Cation, 11739-11746.	8.0	92
546	Metal@semiconductor core-shell nanocrystals with atomically organized interfaces for efficient hot electron-mediated photocatalysis. Nano Energy, 2018, 48, 44-52.	16.0	118
547	The effects of oxygen in spinel oxide Li1+xTi2â^'xO4â^'δ thin films. Scientific Reports, 2018, 8, 3995.	3.3	14
548	Ultrathin 2D Zirconium Metal–Organic Framework Nanosheets: Preparation and Application in Photocatalysis. Small, 2018, 14, e1703929.	10.0	171
549	Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nature Chemistry, 2018, 10, 456-461.	13.6	220
550	Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions. Materials Chemistry Frontiers, 2018, 2, 1024-1030.	5.9	46
551	Core–Shell Aluminum@Carbon Nanospheres for Dualâ€ion Batteries with Excellent Cycling Performance under High Rates. Advanced Energy Materials, 2018, 8, 1701967.	19.5	87
552	Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals. Applied Catalysis B: Environmental, 2018, 221, 467-472.	20.2	58
553	Application of chemical vapor–deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Research, 2018, 11, 1787-1797.	10.4	71
554	From biological enzyme to single atomic Fe–N–C electrocatalyst for efficient oxygen reduction. Chemical Communications, 2018, 54, 1307-1310.	4.1	50
555	Triphase electrode performance adjustment for rechargeable ion batteries. Nano Energy, 2018, 43, 1-10.	16.0	34
556	Improving the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 through a cooperative doping of Na+ and PO43â^ with Na3PO4. Journal of Power Sources, 2018, 375, 1-10.	7.8	100
557	Selfâ€Standing 3D Cathodes for Allâ€Solidâ€State Thin Film Lithium Batteries with Improved Interface Kinetics. Small, 2018, 14, e1804149.	10.0	60
558	Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563, 546-550.	27.8	988

#	Article	lF	CITATIONS
559	Realization of continuous electron doping in bulk iron selenides and identification of a new superconducting zone. Physical Review B, 2018, 98, .	3.2	10
560	Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12692-12697.	7.1	325
561	A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nature Communications, 2018, 9, 5100.	12.8	142
562	Charge transfer drives anomalous phase transition in ceria. Nature Communications, 2018, 9, 5063.	12.8	48
563	Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nature Communications, 2018, 9, 4068.	12.8	90
564	Refreshing Piezoelectrics: Distinctive Role of Manganese in Lead-Free Perovskites. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37298-37306.	8.0	36
565	Magnetic Anisotropy Controlled by Distinct Interfacial Lattice Distortions at the La _{1â€"<i>x</i>} Sr _X MnO Interfaces. ACS Applied Materials & Sub; Interfaces, 2018, 10, 40951-40957.	< 8 ub>3 <td>รเช่ง></td>	รเช่ง>
566	Constructing NiCo/Fe ₃ O ₄ Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018, 140, 15336-15341.	13.7	310
567	Atmosphericâ€Pressure Synthesis of 2D Nitrogenâ€Rich Tungsten Nitride. Advanced Materials, 2018, 30, e1805655.	21.0	104
568	Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nature Materials, 2018, 17, 1108-1114.	27.5	348
569	Yin-Yang Harmony: Metal and Nonmetal Dual-Doping Boosts Electrocatalytic Activity for Alkaline Hydrogen Evolution. ACS Energy Letters, 2018, 3, 2750-2756.	17.4	154
570	Water printing of ferroelectric polarization. Nature Communications, 2018, 9, 3809.	12.8	75
571	Surfaces/Interfaces Modification for Vacancies Enhancing Lithium Storage Capability of Cu2O Ultrasmall Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35137-35144.	8.0	31
572	Dendritic defect-rich palladium–copper–cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nature Communications, 2018, 9, 3702.	12.8	204
573	Direct Chirality Recognition of Singleâ€Crystalline and Singleâ€Walled Transition Metal Oxide Nanotubes on Carbon Nanotube Templates. Advanced Materials, 2018, 30, e1803368.	21.0	14
574	Chemical Vapor Deposition Grown Waferâ€Scale 2D Tantalum Diselenide with Robust Chargeâ€Densityâ€Wave Order. Advanced Materials, 2018, 30, e1804616.	21.0	63
575	Liâ€Rich Li[Li _{1/6} Fe _{1/6} Ni _{1/6} Mn _{1/2}]O ₂ (LFNMO) Cathodes: Atomic Scale Insight on the Mechanisms of Cycling Decay and of the Improvement due to Cobalt Phosphate Surface Modification. Small, 2018, 14, e1802570.	10.0	41
576	Germanium isotope effect induced guest rattling and cage distortion in clathrates. Journal of Materiomics, 2018, 4, 338-344.	5.7	1

#	Article	IF	Citations
577	Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru $<$ sub $>1<$ sub $>/$ mpg-C $<$ sub $>3sub>N<sub>4sub> Catalyst. Journal of the American Chemical Society, 2018, 140, 11161-11164.$	13.7	199
578	Interface enhanced superconductivity in monolayer FeSe films on MgO(001): charge transfer with atomic substitution. Science Bulletin, 2018, 63, 747-752.	9.0	24
579	Evolution of topological skyrmions across the spin reorientation transition in Pt/Co/Ta multilayers. Physical Review B, 2018, 97, .	3.2	41
580	Electrospinning synthesis of high performance carbon nanofiber coated flower-like MoS2 nanosheets for dye-sensitized solar cells counter electrode. Electrochimica Acta, 2018, 280, 94-100.	5.2	44
581	Selfâ€Limited onâ€Site Conversion of MoO ₃ Nanodots into Vertically Aligned Ultrasmall Monolayer MoS ₂ for Efficient Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1800734.	19.5	112
582	Stabilizing Cathode Materials of Lithium-Ion Batteries by Controlling Interstitial Sites on the Surface. CheM, 2018, 4, 1685-1695.	11.7	63
583	Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures. Nature Communications, 2018, 9, 1923.	12.8	63
584	Phase Modulation of (1Tâ€2H)â€MoSe2/TiC Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1802223.	21.0	244
585	Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries. Chinese Physics B, 2018, 27, 066107.	1.4	9
586	Hollow Rh nanoparticles with nanoporous shell as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 282, 853-859.	5.2	35
587	Synthesis of Hierarchical 4H/fcc Ru Nanotubes for Highly Efficient Hydrogen Evolution in Alkaline Media. Small, 2018, 14, e1801090.	10.0	80
588	Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nature Communications, 2018, 9, 2452.	12.8	431
589	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	21.0	100
590	A Flexible Sulfurâ€Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage. Small, 2018, 14, e1802218.	10.0	103
591	Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nature Chemistry, 2018, 10, 924-931.	13.6	558
592	Highly Efficient CO ₂ Electroreduction on ZnN ₄ â€based Singleâ€Atom Catalyst. Angewandte Chemie, 2018, 130, 12483-12487.	2.0	83
593	Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nature Nanotechnology, 2018, 13, 947-952.	31.5	163
594	Hydrogen Evolution: Self-Limited on-Site Conversion of MoO3 Nanodots into Vertically Aligned Ultrasmall Monolayer MoS2 for Efficient Hydrogen Evolution (Adv. Energy Mater. 21/2018). Advanced Energy Materials, 2018, 8, 1870098.	19.5	1

#	Article	IF	CITATIONS
595	Facile Preparation of Highly Stretchable and Recovery Peptide-Polyurethane/Ureas. Polymers, 2018, 10, 637.	4.5	6
596	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology, 2018, 13, 856-861.	31.5	741
597	Natural oxidation of amorphous Cu Zr1- alloys. Applied Surface Science, 2018, 457, 396-402.	6.1	26
598	Highly Efficient CO ₂ Electroreduction on ZnN ₄ â€based Singleâ€Atom Catalyst. Angewandte Chemie - International Edition, 2018, 57, 12303-12307.	13.8	356
599	ZIFâ€8/ZIFâ€67â€Derived Coâ€N <i>_x</i> â€Embedded 1D Porous Carbon Nanofibers with Graphitic Carbonâ€Encased Co Nanoparticles as an Efficient Bifunctional Electrocatalyst. Small, 2018, 14, e1800423.	10.0	232
600	Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nature Communications, 2018, 9, 1813.	12.8	408
601	Unusual Structural Transformation in LiMn2O4 Cathode Revealed by Atomic-Scale STEM Characterization. Microscopy and Microanalysis, 2018, 24, 62-63.	0.4	0
602	Amorphous/Crystalline Heteroâ€Phase Pd Nanosheets: Oneâ€Pot Synthesis and Highly Selective Hydrogenation Reaction. Advanced Materials, 2018, 30, e1803234.	21.0	231
603	Polar Solvent Induced Lattice Distortion of Cubic CsPbl ₃ Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. Journal of the American Chemical Society, 2018, 140, 11705-11715.	13.7	223
604	Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nature Communications, 2018, 9, 3341.	12.8	60
605	Interfacing with silica boosts the catalysis of copper. Nature Communications, 2018, 9, 3367.	12.8	159
606	Twin Crystal Induced near Zero Thermal Expansion in SnO ₂ Nanowires. Journal of the American Chemical Society, 2018, 140, 7403-7406.	13.7	37
607	Preparation of $1T\hat{a}\in^2$ -Phase ReS _{2<i>x</i>} Se _{2(1-<i>x</i>)} (<i>x</i> = 0 $\hat{a}\in^{\circ}$ 1) Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 8563-8568.	13.7	104
608	Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries. Nanoscale, 2018, 10, 12430-12435.	5.6	9
609	Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nature Communications, 2018, 9, 2353.	12.8	278
610	Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy. Chinese Physics Letters, 2018, 35, 076802.	3.3	34
611	Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1631-1646.	2.8	8
612	Interfacial Mechanism in Lithium–Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. Journal of the American Chemical Society, 2018, 140, 8147-8155.	13.7	125

#	Article	IF	Citations
613	Crystal Phase and Architecture Engineering of Lotusâ€Thalamusâ€Shaped Ptâ€Ni Anisotropic Superstructures for Highly Efficient Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1801741.	21.0	163
614	Advanced Transmission Electron Microscopy for Electrode and Solidâ€Electrolyte Materials in Lithiumâ€lon Batteries. Small Methods, 2018, 2, 1800006.	8.6	41
615	Selenium embedded in MOF-derived N-doped microporous carbon polyhedrons as a high performance cathode for sodium–selenium batteries. Materials Chemistry Frontiers, 2018, 2, 1574-1582.	5.9	48
616	Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nature Communications, 2018, 9, 2609.	12.8	389
617	Two-dimensional spinodal interface in one-step grown graphene-molybdenum carbide heterostructures. Physical Review Materials, 2018, 2, .	2.4	9
618	Control of charge order melting through local memristive migration of oxygen vacancies. Physical Review Materials, 2018, 2, .	2.4	9
619	Interface enhanced superconductivity in monolayer FeSe film on oxide substrate. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 207415.	0.5	1
620	Synergistic Coupling between Li7La3Zr2O12 and Poly(vinylidene fluorde) Induces High Performance of Solid Composite Electrolytes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 331-332.	4.9	0
621	Aberration Corrected Transmission Electron Microscopy and Its Applications. Springer Tracts in Modern Physics, 2018, , 301-379.	0.1	0
622	Annealing-regulated elimination of residual strain-induced structural relaxation for stable high-power Li4Ti5O12 nanosheet anodes. Nano Energy, 2017, 32, 533-541.	16.0	29
623	Sodiumâ€lon Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dualâ€Doping. Advanced Science, 2017, 4, 1600468.	11.2	164
624	A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes. Scientific Reports, 2017, 7, 41217.	3.3	60
625	Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth. Physical Review Letters, 2017, 118, 016101.	7.8	41
626	Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode. Nano Research, 2017, 10, 2083-2095.	10.4	40
627	Free-Standing Single-Molecule Thick Crystals Consisting of Linear Long-Chain Polymers. Nano Letters, 2017, 17, 1655-1659.	9.1	10
628	Electric-Field Modulation of Interface Magnetic Anisotropy and Spin Reorientation Transition in (Co/Pt) ₃ /PMN–PT Heterostructure. ACS Applied Materials & Interfaces, 2017, 9, 10855-10864.	8.0	56
629	In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO ₂ Cathode in a Working All-Solid-State Battery. Journal of the American Chemical Society, 2017, 139, 4274-4277.	13.7	142
630	PdAuCu Nanobranch as Selfâ€Repairing Electrocatalyst for Oxygen Reduction Reaction. ChemSusChem, 2017, 10, 1469-1474.	6.8	19

#	Article	IF	CITATIONS
631	Enhanced Average Thermoelectric Figure of Merit of the PbTe–SrTe–MnTe Alloy. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 8729-8736.	8.0	38
632	Anisotropic electron-phonon coupling in the spinel oxide superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>LiT</mml:mi><mml:msub><mml:mi mathvariant="normal">i</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> . Physical Review B, 2017, 95, .	3.2	14
633	Tunable thermal expansion in framework materials through redox intercalation. Nature Communications, 2017, 8, 14441.	12.8	95
634	New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk–Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. Nano Letters, 2017, 17, 2034-2042.	9.1	386
635	Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route. Nano Research, 2017, 10, 2761-2771.	10.4	13
636	Multichannel Porous TiO ₂ Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance. Small, 2017, 13, 1700129.	10.0	145
637	Atomic-Scale Structure-Property Relationships in Lithium Ion Battery Electrode Materials. Annual Review of Materials Research, 2017, 47, 175-198.	9.3	23
638	In situ atomic level observations of Al 2 O 3 forming on surface of metallic glasses. Scripta Materialia, 2017, 136, 68-73.	5.2	9
639	Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2017, 139, 7294-7301.	13.7	354
640	Engineering the Thermoelectric Transport in Halfâ€Heusler Materials through a Bottomâ€Up Nanostructure Synthesis. Advanced Energy Materials, 2017, 7, 1700446.	19.5	48
641	Hydroxyl-Dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl Photocatalyst. ACS Applied Materials & Diterfaces, 2017, 9, 16620-16626.	8.0	176
642	Crystallinityâ€Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni ₃ B for Efficient Water Oxidation. Angewandte Chemie, 2017, 129, 6672-6677.	2.0	34
643	Crystallinityâ€Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni ₃ B for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2017, 56, 6572-6577.	13.8	271
644	Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Research, 2017, 10, 4201-4209.	10.4	56
645	A general strategy to synthesize chemically and topologically anisotropic Janus particles. Science Advances, 2017, 3, e1603203.	10.3	105
646	Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nature Communications, 2017, 8, 15881.	12.8	191
647	Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science, 2017, 357, 389-393.	12.6	534
648	Amorphous Cobalt Oxide Nanoparticles as Active Waterâ€Oxidation Catalysts. ChemCatChem, 2017, 9, 3641-3645.	3.7	34

#	Article	IF	Citations
649	High Performance Lithium Secondary Batteries Based on Novel Ni3Co6S8@C Core—Shell Nanoparticle. Journal of Nanoscience and Nanotechnology, 2017, 17, 5384-5390.	0.9	0
650	Designing Air-Stable O3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries. Journal of the American Chemical Society, 2017, 139, 8440-8443.	13.7	303
651	Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature, 2017, 546, 124-128.	27.8	551
652	Suppression of the Charge Density Wave State in Twoâ€Dimensional 1 <i>T</i> à€¶iSe ₂ by Atmospheric Oxidation. Angewandte Chemie - International Edition, 2017, 56, 8981-8985.	13.8	48
653	Zn Single Atom Catalyst for Highly Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2017, 27, 1700802.	14.9	296
654	Effect of strain on space charge layer in GaN nanowires investigated by in-situ off-axis electron holography. Progress in Natural Science: Materials International, 2017, 27, 186-191.	4.4	3
655	Heterogeneous growth of single crystals on polycrystals. Physical Review B, 2017, 95, .	3.2	1
656	Tiâ€Substituted NaNi _{0.5} Mn _{0.5â€} <i>_x</i> Ti <i>_x</i> O ₂ Cathodes with Reversible O3â^P3 Phase Transition for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1700210.	21.0	309
657	Microstructure dynamics of rechargeable battery materials studied by advanced transmission electron microscopy. NPG Asia Materials, 2017, 9, e360-e360.	7.9	20
658	High stored energy of metallic glasses induced by high pressure. Applied Physics Letters, 2017, 110, .	3.3	40
659	Significantly Increased Raman Enhancement on MoX ₂ (X = S, Se) Monolayers upon Phase Transition. Advanced Functional Materials, 2017, 27, 1606694.	14.9	158
660	Dualâ€functional crystalline BeO layer in enhancementâ€mode ZnO/Si thin film transistors. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600443.	2.4	3
661	Anchoring Nitrogenâ€Doped TiO ₂ Nanocrystals on Nitrogenâ€Doped 3D Graphene Frameworks for Enhanced Lithium Storage. Chemistry - A European Journal, 2017, 23, 1757-1762.	3.3	25
662	Precisely Aligned Monolayer MoS ₂ Epitaxially Grown on hâ€BN basal Plane. Small, 2017, 13, 1603005.	10.0	91
663	Highly Active and Durable Pt ₇₂ Ru ₂₈ Porous Nanoalloy Assembled with Subâ€4.0 nm Particles for Methanol Oxidation. Advanced Energy Materials, 2017, 7, 1601593.	19.5	81
664	Highly Mobile Two-Dimensional Electron Gases with a Strong Gating Effect at the Amorphous LaAlO ₃ /KTaO ₃ Interface. ACS Applied Materials & Interfaces, 2017, 9, 36456-36461.	8.0	69
665	Vanadium Diselenide Single Crystals: Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extraâ€High Electrical Conductivity (Adv. Mater. 37/2017). Advanced Materials, 2017, 29, .	21.0	26
666	Topotactic Reduction toward a Noncentrosymmetric Deficient Perovskite Tb _{0.50} Ca _{0.50} Mn _{0.96} O _{2.37} with Ordered Mn Vacancies and Piezoelectric Behavior. Chemistry of Materials, 2017, 29, 9840-9850.	6.7	7

#	Article	IF	Citations
667	Quasi-two-dimensional superconductivity from dimerization of atomically ordered AuTe2Se4/3 cubes. Nature Communications, 2017, 8, 871.	12.8	15
668	Atomicâ€Scale Monitoring of Electrode Materials in Lithiumâ€Ion Batteries using In Situ Transmission Electron Microscopy. Advanced Energy Materials, 2017, 7, 1700709.	19.5	53
669	Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature Communications, 2017, 8, 958.	12.8	191
670	Correlations between Transition-Metal Chemistry, Local Structure, and Global Structure in Li ₂ Ru _{0.5} Mn _{0.5} O ₃ Investigated in a Wide Voltage Window. Chemistry of Materials, 2017, 29, 9053-9065.	6.7	40
671	Effects of line defects on the electronic and optical properties of strain-engineered WO ₃ thin films. Journal of Materials Chemistry C, 2017, 5, 11694-11699.	5.5	25
672	Electrochemically Driven Giant Resistive Switching in Perovskite Nickelates Heterostructures. Advanced Electronic Materials, 2017, 3, 1700321.	5.1	32
673	Atomic-Scale Characterization of Electrode Materials in Lithium/Sodium-ion Batteries by STEM. Microscopy and Microanalysis, 2017, 23, 2000-2001.	0.4	0
674	Optical properties of Mn ²⁺ doped cesium lead halide perovskite nanocrystals via a cation–anion co-substitution exchange reaction. Journal of Materials Chemistry C, 2017, 5, 9281-9287.	5.5	76
675	Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide. Nature Communications, 2017, 8, 566.	12.8	81
676	Flexible strain sensors with high performance based on metallic glass thin film. Applied Physics Letters, 2017, 111, .	3.3	55
677	Unusual Spinel-to-Layered Transformation in LiMn ₂ O ₄ Cathode Explained by Electrochemical and Thermal Stability Investigation. ACS Applied Materials & Diterfaces, 2017, 9, 35463-35475.	8.0	90
678	Manipulating magnetoelectric properties by interfacial coupling in La0.3Sr0.7MnO3/Ba0.7Sr0.3TiO3 superlattices. Scientific Reports, 2017, 7, 7693.	3.3	11
679	Probing the crystallographic orientation of two-dimensional atomic crystals with supramolecular self-assembly. Nature Communications, 2017, 8, 377.	12.8	30
680	Highâ€Yield Synthesis of Crystalâ€Phaseâ€Heterostructured 4H/fcc Au@Pd Core–Shell Nanorods for Electrocatalytic Ethanol Oxidation. Advanced Materials, 2017, 29, 1701331.	21.0	144
681	Significantly Enhanced Hydrogen Evolution Activity of Freestanding Pdâ€Ru Distorted Icosahedral Clusters with less than 600 Atoms. Chemistry - A European Journal, 2017, 23, 18203-18207.	3.3	24
682	Interface Engineering of electron Transport Layerâ€Free Planar Perovskite Solar Cells with Efficiency Exceeding 15 %. Energy Technology, 2017, 5, 1844-1851.	3.8	13
683	Construction of FeN alloy films with ultra-strong magnetism and tunable magnetic anisotropy for spintronic application. Journal of Alloys and Compounds, 2017, 725, 32-40.	5 . 5	5
684	Metallic Vanadium Disulfide Nanosheets as a Platform Material for Multifunctional Electrode Applications. Nano Letters, 2017, 17, 4908-4916.	9.1	230

#	Article	IF	CITATIONS
685	Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO2.5-Ïf. Nature Communications, 2017, 8, 104.	12.8	66
686	Controlling charges distribution at the surface of a single GaN nanowire by in-situ strain. Progress in Natural Science: Materials International, 2017, 27, 430-434.	4.4	4
687	Investigation on the Controllable Microstructures of High Iron Content Al–Fe Alloys Fabricated via Solid–Liquid Mixture Method Combining with Plasma Arc Heating Approach. Advanced Engineering Materials, 2017, 19, 1700426.	3.5	O
688	Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extraâ∈High Electrical Conductivity. Advanced Materials, 2017, 29, 1702359.	21.0	191
689	Suppressing the Structure Deterioration of Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ through Atom-Scale Interfacial Integration of Self-Forming Hierarchical Spinel Layer with Ni Gradient Concentration. ACS Applied Materials & Samp: Interfaces, 2017, 9, 29794-29803.	8.0	104
690	Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Applied Catalysis B: Environmental, 2017, 219, 693-704.	20.2	617
691	Realization of zero-field skyrmions with high-density via electromagnetic manipulation in Pt/Co/Ta multilayers. Applied Physics Letters, 2017, 111 , .	3.3	57
692	Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS ₂ Continuous Films. ACS Nano, 2017, 11, 12001-12007.	14.6	397
693	Coexistence of polar distortion and metallicity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>PbTi</mml:mi><mml:mi><mml:msub></mml:msub></mml:mi></mml:msub></mml:mrow></mml:math> . Physical Review B. 2017. 96	ngow> <m< td=""><td>ml;mn>1</td></m<>	ml;mn>1
694	Genomeâ€wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage. Animal Genetics, 2017, 48, 611-614.	1.7	17
695	Suppression of the Charge Density Wave State in Twoâ€Dimensional 1 <i>T</i> à€TiSe ₂ by Atmospheric Oxidation. Angewandte Chemie, 2017, 129, 9109-9113.	2.0	2
696	Precipitation of (Si2â^'xAlx)Hf in an Alâ€"Siâ€"Mgâ€"Hf Alloy. Microscopy and Microanalysis, 2017, 23, 724-729.	0.4	2
697	Synthesis of Ultrathin PdCu Alloy Nanosheets Used as a Highly Efficient Electrocatalyst for Formic Acid Oxidation. Advanced Materials, 2017, 29, 1700769.	21.0	207
698	Edge Epitaxy of Two-Dimensional MoSe ₂ and MoS ₂ Nanosheets on One-Dimensional Nanowires. Journal of the American Chemical Society, 2017, 139, 8653-8660.	13.7	118
699	Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nature Energy, 2017, 2, .	39.5	302
700	Confined Pyrolysis within Metal–Organic Frameworks To Form Uniform Ru ₃ Clusters for Efficient Oxidation of Alcohols. Journal of the American Chemical Society, 2017, 139, 9795-9798.	13.7	258
701	One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting 뱉^'Mo2C. Physical Review B, 2017, 95, .	3.2	49
702	Transparent magnetic semiconductor with embedded metallic glass nano-granules. Materials and Design, 2017, 132, 208-214.	7.0	16

#	Article	IF	Citations
703	Nanoscale Bandgap Tuning across an Inhomogeneous Ferroelectric Interface. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24704-24710.	8.0	14
704	$\mbox{\sc i}\mbox{\sc i}\mbo$	1.3	9
705	A Selfâ€Forming Composite Electrolyte for Solidâ€State Sodium Battery with Ultralong Cycle Life. Advanced Energy Materials, 2017, 7, 1601196.	19.5	231
706	Methylammonium cation deficient surface for enhanced binding stability at TiO2/CH3NH3PbI3 interface. Nano Research, 2017, 10, 483-490.	10.4	8
707	Capacity Fade Mechanism of Li ₄ Ti ₅ O ₁₂ Nanosheet Anode. Advanced Energy Materials, 2017, 7, 1601825.	19.5	67
708	Study of microstructure of nickel-based superalloys at high temperatures. Scripta Materialia, 2017, 126, 55-57.	5.2	45
709	Preparation and characterization of cellulose triacetate membranes via thermally induced phase separation. Journal of Applied Polymer Science, 2017, 134, .	2.6	24
710	Electric-field control of ferromagnetism through oxygen ion gating. Nature Communications, 2017, 8, 2156.	12.8	85
711	Direct Polarity Determination of Ferroelectric Ca0.28Ba0.72Nb2O6 Single Crystal by Combined Defocused Convergent Beam Electron Diffraction and Simulation. Microscopy and Microanalysis, 2017, 23, 1670-1671.	0.4	0
712	Post Iron Decoration of Mesoporous Nitrogenâ€Doped Carbon Spheres for Efficient Electrochemical Oxygen Reduction. Advanced Energy Materials, 2017, 7, 1701154.	19.5	65
713	Construction of Renewable Superhydrophobic Surfaces via Thermally Induced Phase Separation and Mechanical Peeling. Chinese Journal of Chemical Physics, 2017, 30, 219-224.	1.3	3
714	C/L-band emission of InAs QDs monolithically grown on Ge substrate. Optical Materials Express, 2017, 7, 2955.	3.0	12
715	Effect of Terraces at the Interface on the Structural and Physical Properties of La _{0.8} Sr _{0.2} MnO ₃ Thin Films. Chinese Physics Letters, 2016, 33, 076801.	3.3	3
716	Incorporation of Reactive Corrosion Inhibitor in Waterborne Acrylic Polyurethane Coatings and Evaluation of its Corrosion Performance. Chinese Journal of Chemical Physics, 2016, 29, 271-278.	1.3	14
717	The Origin of Oxygen Vacancies Controlling La _{2/3} Sr _{1/3} MnO ₃ Electronic and Magnetic Properties. Advanced Materials Interfaces, 2016, 3, 1500753.	3.7	7 3
718	Structurally Wellâ€Defined Au@Cu _{2â^'} <i>_x</i> S Coreâ€"Shell Nanocrystals for Improved Cancer Treatment Based on Enhanced Photothermal Efficiency. Advanced Materials, 2016, 28, 3094-3101.	21.0	228
719	Cathode Materials: Enhancing the Kinetics of Liâ€Rich Cathode Materials through the Pinning Effects of Gradient Surface Na ⁺ Doping (Adv. Energy Mater. 6/2016). Advanced Energy Materials, 2016, 6, .	19.5	10
720	Interface of transition metal oxides at the atomic scale. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	5.1	6

#	Article	IF	Citations
721	Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Advances, 2016, 6, 67049-67056.	3.6	86
722	MOFâ€Derived Hollow Co ₉ S ₈ Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Liâ€Ion Storage. Small, 2016, 12, 2354-2364.	10.0	306
723	Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dualâ€Doped Carbon Network. Small, 2016, 12, 2559-2566.	10.0	147
724	Enhancing the Kinetics of Liâ€Rich Cathode Materials through the Pinning Effects of Gradient Surface Na ⁺ Doping. Advanced Energy Materials, 2016, 6, 1501914.	19.5	288
725	Sodium Storage: Controlled SnO2Crystallinity Effectively Dominating Sodium Storage Performance (Adv. Energy Mater. 10/2016). Advanced Energy Materials, 2016, 6, .	19.5	0
726	Nitrogen-Doped Ordered Mesoporous Anatase TiO ₂ Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries. Small, 2016, 12, 3522-3529.	10.0	134
727	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie - International Edition, 2016, 55, 4215-4219.	13.8	176
728	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Mn _{Ni_{0.33}O₂ by Magnesium Substitution for Improved Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 7445-7449.}	13.8	439
729	Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34590-34597.	8.0	32
730	Scanning transmission electron microscopy imaging of $180 \hat{A}^\circ$ ferroelectric domains and application to Ca0.28Ba0.72Nb2O6 single crystals. Applied Physics Letters, 2016, 109, .	3.3	1
731	Temperature-dependent resistance switching in SrTiO3. Applied Physics Letters, 2016, 108, 242901.	3.3	7
732	Heavily Cr-doped (Bi,Sb) ₂ Te ₃ as a ferromagnetic insulator with electrically tunable conductivity. APL Materials, 2016, 4, 086101.	5.1	16
733	A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nature Communications, 2016, 7, 13497.	12.8	71
734	Insulating phase at low temperature in ultrathin La0.8Sr0.2MnO3 films. Scientific Reports, 2016, 6, 22382.	3.3	35
735	Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides. Chinese Physics B, 2016, 25, 066803.	1.4	4
736	In-situ potential mapping of space charge layer in GaN nanowires under electrical field by off-axis electron holography. Progress in Natural Science: Materials International, 2016, 26, 163-168.	4.4	7
737	High performance bio-based polyurethane elastomers: Effect of different soft and hard segments. Chinese Journal of Polymer Science (English Edition), 2016, 34, 901-909.	3.8	25
738	Real-space imaging of nucleation and size induced amorphization in PdSi nanoparticles. Intermetallics, 2016, 74, 31-37.	3.9	11

#	Article	IF	CITATIONS
739	High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode. Nano Letters, 2016, 16, 3600-3606.	9.1	14
740	Synthesis and Electrochemical Properties of a High Capacity Li-rich Cathode Material in molten KCl-Na2CO3 flux. Electrochimica Acta, 2016, 196, 749-755.	5.2	8
741	Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 10841-10849.	8.0	74
742	Deterministic Role of Concentration Surplus of Cation Vacancy over Anion Vacancy in Bipolar Memristive NiO. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11583-11591.	8.0	26
743	Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352, 797-800.	12.6	1,540
744	Atomically resolved FeSe/SrTiO ₃ (001) interface structure by scanning transmission electron microscopy. 2D Materials, 2016, 3, 024002.	4.4	50
745	Temperatureâ€Mediated Selective Growth of MoS ₂ /WS ₂ and WS ₂ /MoS ₂ Vertical Stacks on Au Foils for Direct Photocatalytic Applications. Advanced Materials, 2016, 28, 10664-10672.	21.0	188
746	Two-dimensional nanostructures of non-layered ternary thiospinels and their bifunctional electrocatalytic properties for oxygen reduction and evolution: the case of CuCo ₂ S ₄ nanosheets. Inorganic Chemistry Frontiers, 2016, 3, 1501-1509.	6.0	69
747	Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539, 76-80.	27.8	1,201
748	Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature, 2016, 538, 84-87.	27.8	647
749	2D Metals: 2D Metals by Repeated Size Reduction (Adv. Mater. 37/2016). Advanced Materials, 2016, 28, 8169-8169.	21.0	1
750	Highâ€Rate Charging Induced Intermediate Phases and Structural Changes of Layerâ€Structured Cathode for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1600597.	19.5	110
751	Towards easily tunable hydrogen storage via a hydrogen-induced glass-to-glass transition in Mg-based metallic glasses. Acta Materialia, 2016, 120, 68-74.	7.9	68
752	Ultra-small Tetrametallic Pt-Pd-Rh-Ag Nanoframes with Tunable Behavior for Direct Formic Acid/Methanol Oxidation. Small, 2016, 12, 5261-5268.	10.0	52
753	Superconducting Resonators Based on TiN/Tapering/NbN/Tapering/TiN Heterostructures. Advanced Engineering Materials, 2016, 18, 1816-1822.	3.5	4
754	High-Performance Anode Material Sr ₂ FeMo _{0.65} Ni _{0.35} O _{6â^'Î} with <i>In Situ</i> Nanoparticle Catalyst. ACS Nano, 2016, 10, 8660-8669.	14.6	287
755	Hierarchically Staggered Nanostructure of Mineralized Collagen as a Boneâ€Grafting Scaffold. Advanced Materials, 2016, 28, 8740-8748.	21.0	129
756	Bio-based (co)polylactide-urethane networks with shape memory behavior at body temperature. RSC Advances, 2016, 6, 79268-79274.	3.6	22

#	Article	IF	Citations
757	Analytical ABF-STEM imaging of Li ions in rechargeable batteries. Microscopy (Oxford, England), 2016, 66, 25-38.	1.5	11
758	Scalable Nanoporous (Pt _{1–<i>x</i>} Ni _{<i>x</i>}) ₃ Al Intermetallic Compounds as Highly Active and Stable Catalysts for Oxygen Electroreduction. ACS Applied Materials & amp; Interfaces, 2016, 8, 32910-32917.	8.0	29
759	Improvement of Lithium Storage Performance of Molybdenum Trioxide by a Synergistic Effect of Surface Coating and Oxygen Vacancies. Advanced Materials Interfaces, 2016, 3, 1600730.	3.7	22
760	Phase Separation of Li ₂ S/S at Nanoscale during Electrochemical Lithiation of the Solidâ€State Lithiumâ€"Sulfur Battery Using In Situ TEM. Advanced Energy Materials, 2016, 6, 1600806.	19.5	69
761	Energy Storage: Nitrogen-Doped Ordered Mesoporous Anatase TiO ₂ Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries (Small 26/2016). Small, 2016, 12, 3474-3474.	10.0	8
762	Tunable angular-dependent magnetoresistance correlations in magnetic films and their implications for spin Hall magnetoresistance analysis. Physical Review B, 2016, 93, .	3.2	32
763	Magnetic Interactions at the Nanoscale in Trilayer Titanates. Physical Review Letters, 2016, 116, 076802.	7.8	23
764	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20138-20146.	8.0	197
765	2D Metals by Repeated Size Reduction. Advanced Materials, 2016, 28, 8170-8176.	21.0	68
766	Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nature Energy, 2016, 1 , .	39.5	352
767	Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354, 1414-1419.	12.6	1,292
768	Carbon-Coated Na ₃ V ₂ (PO ₄) ₃ Anchored on Freestanding Graphite Foam for High-Performance Sodium-Ion Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 32360-32365.	8.0	50
769	Tracking the morphology evolution of nano-lead electrodeposits on the internal surface of porous carbon and its influence on lead-carbon batteries. Electrochimica Acta, 2016, 222, 376-384.	5.2	39
770	Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications. Advanced Materials, 2016, 28, 10282-10286.	21.0	148
771	Plasmonic twinned silver nanoparticles with molecular precision. Nature Communications, 2016, 7, 12809.	12.8	235
772	Explanation of diffuse scattering mechanism based on the structure of polar nanoregions in Ba(Tilâ~xSnx)O3. Journal of Applied Physics, 2016, 120, 124103.	2.5	2
773	Bioinspired Electronic Whisker Arrays by Pencilâ€Drawn Paper for Adaptive Tactile Sensing. Advanced Electronic Materials, 2016, 2, 1600093.	5.1	59
774	Oneâ€Dimensional Na ₃ V ₂ (PO ₄) ₃ /C Nanowires as Cathode Materials for Longâ€Life and High Rate Naâ€Ion Batteries. ChemNanoMat, 2016, 2, 726-731.	2.8	38

#	Article	IF	Citations
775	Giant Energy Density and Improved Discharge Efficiency of Solutionâ€Processed Polymer Nanocomposites for Dielectric Energy Storage. Advanced Materials, 2016, 28, 2055-2061.	21.0	534
776	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie, 2016, 128, 4287-4291.	2.0	33
777	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂ by Magnesium Substitution for Improved Sodiumâ€ion Batteries. Angewandte Chemie, 2016, 128, 7571-7575.	2.0	84
778	Manganous oxide nanoparticles encapsulated in few-layer carbon as an efficient electrocatalyst for oxygen reduction in alkaline media. Journal of Materials Chemistry A, 2016, 4, 11775-11781.	10.3	27
779	A flexible S1â^'xSex@porous carbon nanofibers (xâ‰0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries. Energy Storage Materials, 2016, 5, 50-57.	18.0	85
780	Controlled SnO2Crystallinity Effectively Dominating Sodium Storage Performance. Advanced Energy Materials, 2016, 6, 1502057.	19.5	180
781	Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nature Materials, 2016, 15, 564-569.	27.5	548
782	Electrochemiluminescence Tuned by Electron–Hole Recombination from Symmetry-Breaking in Wurtzite ZnSe. Journal of the American Chemical Society, 2016, 138, 1154-1157.	13.7	96
783	Ultrafast and reversible electrochemical lithiation of InAs nanowires observed by in-situ transmission electron microscopy. Nano Energy, 2016, 20, 194-201.	16.0	19
784	Tuning of Photoluminescence by Cation Nanosegregation in the (CaMg) _{<i>x</i>x} (NaSc) _{1â€"<i>x</i>} Si ₂ O ₆ Solid Solution. Journal of the American Chemical Society, 2016, 138, 1158-1161.	13.7	167
785	Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. Nano Letters, 2016, 16, 1546-1553.	9.1	360
786	Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nature Communications, 2016, 7, 10667.	12.8	577
787	Mott Electrons in an Artificial Graphenelike Crystal of Rare-Earth Nickelate. Physical Review Letters, 2016, 116, 056801.	7.8	44
788	Ruthenium–platinum core–shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy, 2016, 21, 247-257.	16.0	121
789	Surface structure evolution of cathode materials for Li-ion batteries. Chinese Physics B, 2016, 25, 018209.	1.4	19
790	Bio-based polyurethanes with shape memory behavior at body temperature: effect of different chain extenders. RSC Advances, 2016, 6, 17888-17895.	3.6	47
791	Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe ₃ C Nanoparticles Boost the Activity of Fe–N _{<i>x</i>Society, 2016, 138, 3570-3578.}	13.7	1,549
792	Enhancement of Thermoelectric Properties of Molybdenum Diselenide Through Combined Mg Intercalation and Nb Doping. Journal of Electronic Materials, 2016, 45, 2926-2934.	2.2	17

#	Article	IF	CITATIONS
793	Highly Reversible and Ultrafast Sodium Storage in NaTi ₂ (PO ₄) ₃ Nanoparticles Embedded in Nanocarbon Networks. ACS Applied Materials & Diterfaces, 2016, 8, 689-695.	8.0	82
794	Design of a Photoactive Hybrid Bilayer Dielectric for Flexible Nonvolatile Organic Memory Transistors. ACS Nano, 2016, 10, 436-445.	14.6	91
795	Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation. Nano Energy, 2016, 19, 198-209.	16.0	94
796	TiO ₂ /CdS porous hollow microspheres rapidly synthesized by salt-assistant aerosol decomposition method for excellent photocatalytic hydrogen evolution performance. Dalton Transactions, 2016, 45, 1160-1165.	3.3	26
797	Controllable synthesis of mesostructures from TiO ₂ hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chemical Science, 2016, 7, 793-798.	7.4	147
798	The state of iron sites in the calcined FeAlPO4-5 and its tuning to the property of microporous AlPO4-5 molecular sieve. Catalysis Today, 2016, 263, 91-97.	4.4	10
799	Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films. Journal of Applied Physics, $2016, 119, \ldots$	2.5	7
800	The prognostic value of clinical and pathologic features in nonmetastatic operable male breast cancer. Asian Journal of Andrology, 2016, 18, 90.	1.6	5
801	Organic Fieldâ€Effect Transistors: Solutionâ€Processable, Lowâ€Voltage, and Highâ€Performance Monolayer Fieldâ€Effect Transistors with Aqueous Stability and High Sensitivity (Adv. Mater. 12/2015). Advanced Materials, 2015, 27, 2124-2124.	21.0	O
802	Sodium-Ion Batteries: Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage (Small 40/2015). Small, 2015, 11, 5330-5330.	10.0	0
803	Airâ€Stable Copperâ€Based P2â€Na _{7/9} Cu _{2/9} Fe _{1/9} Mn _{2/3} O ₂ as a New Positive Electrode Material for Sodiumâ€lon Batteries. Advanced Science, 2015, 2, 1500031.	11.2	287
804	A Carbon―and Binderâ€Free Nanostructured Cathode for Highâ€Performance Nonaqueous Liâ€O ₂ Battery. Advanced Science, 2015, 2, 1500092.	11.2	76
805	Singleâ€Crystalline Rhodium Nanosheets with Atomic Thickness. Advanced Science, 2015, 2, 1500100. Reconstruction of electrostatic field at the interface leads to formation of two-dimensional	11.2	93
806	electron gas at multivalent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< th=""><th>0.2</th><th>11</th></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	0.2	11
807	mathvariant="normal">O <mml:mn>3Room-temperature ferroelectricity of SrTiO3 films modulated by cation concentration. Applied Physics Letters, 2015, 107, .</mml:mn>	3.3	23
808	Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy. Scientific Reports, 2015, 5, 17076.	3.3	52
809	Longitudinal wave function control in single quantum dots with an applied magnetic field. Scientific Reports, 2015, 5, 8041.	3.3	15
810	Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition. Scientific Reports, 2015, 5, 15285.	3.3	38

#	Article	IF	Citations
811	Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage. Small, 2015, 11, 5381-5387.	10.0	69
812	New Insights into Improving Rate Performance of Lithiumâ€Rich Cathode Material. Advanced Materials, 2015, 27, 3915-3920.	21.0	185
813	Metal–Insulator Transition Induced by Oxygen Vacancies from Electrochemical Reaction in Ionic Liquidâ€Gated Manganite Films. Advanced Materials Interfaces, 2015, 2, 1500407.	3.7	68
814	A Novel High Capacity Positive Electrode Material with Tunnelâ€Type Structure for Aqueous Sodiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1501005.	19.5	161
815	Feâ€Based Tunnelâ€Type Na _{0.61} [Mn _{0.27} Fe _{0.34} Ti _{0.39}]O ₂ Designed by a New Strategy as a Cathode Material for Sodiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1501156.	19.5	122
816	Improving the Electrochemical Performance of the Li ₄ Ti ₅ O ₁₂ Electrode in a Rechargeable Magnesium Battery by Lithium–Magnesium Coâ€Intercalation. Angewandte Chemie - International Edition, 2015, 54, 5757-5761.	13.8	156
817	Resolving the Atomic Structure of Materials Containing Light Elements by Annular-Bright-Field Electron Microscopy. Microscopy and Microanalysis, 2015, 21, 1919-1920.	0.4	0
818	Detection of a Superconducting Phase in a Two-Atom Layer of Hexagonal Ga Film Grown on Semiconducting GaN(0001). Physical Review Letters, 2015, 114, 107003.	7.8	81
819	Magnetism-Driven Ferroelectricity in Double Perovskite Y ₂ NiMnO ₆ . ACS Applied Materials & Double Perovskite Y ₂ NiMnO ₆ . ACS	8.0	68
820	Surface-Structure Sensitivity of CeO ₂ Nanocrystals in Photocatalysis and Enhancing the Reactivity with Nanogold. ACS Catalysis, 2015, 5, 4385-4393.	11.2	158
821	Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries. RSC Advances, 2015, 5, 55136-55142.	3.6	45
822	AuPd–MnO _x /MOF–Graphene: An Efficient Catalyst for Hydrogen Production from Formic Acid at Room Temperature. Advanced Energy Materials, 2015, 5, 1500107.	19.5	203
823	SiC@Si core–shell nanowires on carbon paper as a hybrid anode forÂlithium-ion batteries. Journal of Power Sources, 2015, 293, 492-497.	7.8	45
824	FeS@C on Carbon Cloth as Flexible Electrode for Both Lithium and Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27804-27809.	8.0	213
825	Atomic insight into electrochemical inactivity of lithium chromate (LiCrO2): Irreversible migration of chromium into lithium layers in surface regions. Journal of Power Sources, 2015, 273, 1218-1225.	7.8	45
826	New Insight into the Atomic-Scale Bulk and Surface Structure Evolution of Li ₄ Ti ₅ O ₁₂ Anode. Journal of the American Chemical Society, 2015, 137, 1581-1586.	13.7	106
827	Synthesis of TiO _{<i>x</i>} Nanotubular Arrays with Oxygen Defects as Highâ€Performance Anodes for Lithiumâ€lon Batteries. ChemElectroChem, 2015, 2, 421-426.	3.4	19
828	Interfacial-Strain-Induced Structural and Polarization Evolutions in Epitaxial Multiferroic BiFeO ₃ (001) Thin Films. ACS Applied Materials & Interfaces, 2015, 7, 2944-2951.	8.0	32

#	Article	IF	CITATIONS
829	Atomicâ€Scale Structure Evolution in a Quasiâ€Equilibrated Electrochemical Process of Electrode Materials for Rechargeable Batteries. Advanced Materials, 2015, 27, 2134-2149.	21.0	63
830	Solutionâ€Processable, Lowâ€Voltage, and Highâ€Performance Monolayer Fieldâ€Effect Transistors with Aqueous Stability and High Sensitivity. Advanced Materials, 2015, 27, 2113-2120.	21.0	97
831	Five-Fold Twinned Pd ₂ NiAg Nanocrystals with Increased Surface Ni Site Availability to Improve Oxygen Reduction Activity. Journal of the American Chemical Society, 2015, 137, 2820-2823.	13.7	100
832	Carbonâ€Coated Germanium Nanowires on Carbon Nanofibers as Selfâ€Supported Electrodes for Flexible Lithiumâ€lon Batteries. Small, 2015, 11, 2762-2767.	10.0	85
833	Solvent-Induced Oriented Attachment Growth of Air-Stable Phase-Pure Pyrite FeS ₂ Nanocrystals. Journal of the American Chemical Society, 2015, 137, 2211-2214.	13.7	56
834	Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Scientific Reports, 2015, 5, 8335.	3.3	102
835	Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6, 6293.	12.8	1,124
836	Arcâ€Melting to Narrow the Bandgap of Oxide Semiconductors. Advanced Materials, 2015, 27, 2589-2594.	21.0	52
837	Novel Largeâ€Scale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for Li–S Batteries. Advanced Energy Materials, 2015, 5, 1500046.	19.5	96
838	Nanoconfined Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₃ Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1402104.	19.5	305
839	Rhâ€Niâ€B Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Hydrous Hydrazine. Advanced Energy Materials, 2015, 5, 1401879.	19.5	61
840	Synthesis and thermoelectric properties of half-Heusler alloy YNiBi. Journal of Applied Physics, 2015, 117, .	2.5	35
841	Probing Reversible Multielectron Transfer and Structure Evolution of Li _{1.2} Cr _{0.4} Mn _{0.4} O ₂ Cathode Material for Li-Ion Batteries in a Voltage Range of 1.0–4.8 V. Chemistry of Materials, 2015, 27, 5238-5252.	6.7	57
842	Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Carboxylated Oligoanilines and Their Anticorrosion Coatings. ACS Applied Materials & Interfaces, 2015, 7, 17641-17648.	8.0	215
843	Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries. Journal of Power Sources, 2015, 293, 799-805. Interface-enhanced high-temperature superconductivity in single-unit-cell <mml:math< td=""><td>7.8</td><td>101</td></mml:math<>	7.8	101
844	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>FeT</mml:mi><mml:msub><mml:mathvariant="normal">e<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^²</mml:mo><mml:mi>x</mml:mi>mathvariant="normal">S<mml:mi><mml:mi>x</mml:mi></mml:mi></mml:mrow></mml:mathvariant="normal"></mml:msub></mml:mrow> films	mi ml;mi> <td></td>	
845	on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mm. 2015,="" 539-547.<="" 94,="" an="" and="" anode="" batteries.="" carbon="" carbon,="" echeveria-inspired="" elastic="" for="" high-rate="" ion="" layer="" lithium="" long-cycle="" on="" physical="" review="" sno2="" td=""><td>10.3</td><td>37</td></mm.></mml:mrow></mml:math>	10.3	37
846	Anticorrosive oligoaniline-containing electroactive siliceous hybrid materials. RSC Advances, 2015, 5, 56011-56019.	3.6	44

#	Article	IF	Citations
847	Direct in situ observation of metallic glass deformation by real-time nano-scale indentation. Scientific Reports, 2015, 5, 9122.	3.3	10
848	High-index Cu2O (113) film on faceted MgO (110) by molecular beam epitaxy. Journal of Crystal Growth, 2015, 420, 32-36.	1.5	3
849	Oxide Semiconductors: Arcâ€Melting to Narrow the Bandgap of Oxide Semiconductors (Adv. Mater.) Tj ETQq1 1	0.784314 21.0	rgBT /Overl
850	Molten salt route of single crystal barium titanate nanowires. Journal of Experimental Nanoscience, 2015, 10, 1126-1136.	2.4	11
851	Toughening of poly(propylene carbonate) by carbon dioxide copolymer poly(urethane-amine) via hydrogen bonding interaction. Chinese Journal of Polymer Science (English Edition), 2015, 33, 838-849.	3.8	6
852	Why Sn doping significantly enhances the dielectric properties of Ba(Ti1-xSnx)O3. Scientific Reports, 2015, 5, 8606.	3.3	84
853	Hierarchically Designed Germanium Microcubes with High Initial Coulombic Efficiency toward Highly Reversible Lithium Storage. Chemistry of Materials, 2015, 27, 2189-2194.	6.7	108
854	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	12.8	316
855	Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe2(MoO4)3. Scientific Reports, 2015, 5, 8810.	3.3	42
856	Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. Nano Energy, 2015, 18, 12-19.	16.0	97
857	Doping the Li ₄ Ti ₅ O ₁₂ lattice with extra-large anions. Materials Express, 2015, 5, 457-462.	0.5	12
858	Enhancement of the thermoelectric properties of MnSb ₂ Se ₄ through Cu resonant doping. RSC Advances, 2015, 5, 99065-99073.	3.6	11
859	Unlocking the energy capabilities of micron-sized LiFePO4. Nature Communications, 2015, 6, 7898.	12.8	65
860	Thermodynamic understanding of Sn whisker growth on the Cu surface in Cu(top)-Sn(bottom) bilayer system upon room temperature aging. Journal of Applied Physics, 2015, 117, 215308.	2.5	4
861	General Strategy for Fabricating Sandwich-like Graphene-Based Hybrid Films for Highly Reversible Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18320-18326.	8.0	23
862	Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoelectric Performance in αâ€MgAgSbâ€Based Materials. Advanced Functional Materials, 2015, 25, 6478-6488.	14.9	70
863	Molecular Beam Epitaxyâ€Grown SnSe in the Rockâ€Salt Structure: An Artificial Topological Crystalline Insulator Material. Advanced Materials, 2015, 27, 4150-4154.	21.0	83
864	Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. Nano Energy, 2015, 16, 389-398.	16.0	150

#	Article	IF	CITATIONS
865	Direct Transformation from Graphitic C ₃ N ₄ to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19626-19634.	8.0	182
866	Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nature Communications, 2015, 6, 8064.	12.8	270
867	MoS ₂ –graphene nanosheet–CNT hybrids with excellent electrochemical performances for lithium-ion batteries. RSC Advances, 2015, 5, 77518-77526.	3.6	52
868	Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS ₂ . Journal of the American Chemical Society, 2015, 137, 15632-15635.	13.7	301
869	Ultrahigh Energy Density of Polymer Nanocomposites Containing BaTiO ₃ @TiO ₂ Nanofibers by Atomicâ€Scale Interface Engineering. Advanced Materials, 2015, 27, 819-824.	21.0	503
870	Insight into the Atomic Structure of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Material in the First Cycle. Chemistry of Materials, 2015, 27, 292-303.	6.7	151
871	Gram-Scale Synthesis of Graphene-Mesoporous SnO2 Composite as Anode for Lithium-ion Batteries. Electrochimica Acta, 2015, 152, 178-186.	5.2	61
872	Performance improvement of Li-rich layer-structured Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ by integration with spinel LiNi _{0.5} Mn _{1.5} O ₄ . Physical Chemistry Chemical Physics, 2015, 17, 1257-1264.	2.8	74
873	Mesostructured Intermetallic Compounds of Platinum and Nonâ€Transition Metals for Enhanced Electrocatalysis of Oxygen Reduction Reaction. Advanced Functional Materials, 2015, 25, 230-237.	14.9	127
874	Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li ₂ O ₂ for Liâ€O ₂ Batteries. Advanced Energy Materials, 2015, 5, 1400664.	19.5	32
875	Topology breaking of the vortex in multiferroic Y0.67Lu0.33MnO3. Applied Physics Letters, 2014, 105, .	3.3	14
876	Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Materials, 2014, 6, e138-e138.	7.9	213
877	A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Materials, 2014, 6, e120-e120.	7.9	130
878	Luminescent Nanoparticles: Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenchingâ€Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd ³⁺ â€Sensitized Nanoparticles (Adv. Mater. 18/2014). Advanced Materials, 2014, 26, 2766-2766.	21.0	2
879	Ultrahigh stability of atomically thin metallic glasses. Applied Physics Letters, 2014, 105, .	3.3	16
880	Proximity effect between a topological insulator and a magnetic insulator with large perpendicular anisotropy. Applied Physics Letters, 2014, 105, 092411.	3.3	37
881	Magnetoelectric transport and quantum interference effect in ultrathin manganite films. Applied Physics Letters, 2014, 104, .	3.3	15
882	Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. Faraday Discussions, 2014, 176, 109-124.	3.2	45

#	Article	IF	CITATIONS
883	Sizeâ€Dependent Staging and Phase Transition in LiFePO ₄ /FePO ₄ . Advanced Functional Materials, 2014, 24, 312-318.	14.9	48
884	Anticorrosive flexible pyrolytic polyimide graphite film as a cathode current collector in lithium bis(trifluoromethane sulfonyl) imide electrolyte. Electrochemistry Communications, 2014, 44, 70-73.	4.7	13
885	Atomic Structure and Kinetics of NASICON Na _x V ₂ (PO ₄) ₃ Cathode for Sodiumâ€lon Batteries. Advanced Functional Materials, 2014, 24, 4265-4272.	14.9	323
886	NiCo ₂ S ₄ sub-micron spheres: an efficient non-precious metal bifunctional electrocatalyst. Nanoscale, 2014, 6, 3540-3544.	5.6	134
887	Feasibility of Using Li ₂ MoO ₃ in Constructing Li-Rich High Energy Density Cathode Materials. Chemistry of Materials, 2014, 26, 3256-3262.	6.7	106
888	Understanding the Rate Capability of Highâ€Energyâ€Density Liâ€Rich Layered Li _{1.2} Ni _{0.15} Co _{0.1} Mn _{0.55} O ₂ Cathode Materials. Advanced Energy Materials, 2014, 4, 1300950.	19.5	480
889	Surface Structure Evolution of LiMn ₂ O ₄ Cathode Material upon Charge/Discharge. Chemistry of Materials, 2014, 26, 3535-3543.	6.7	223
890	Facile synthesis of germanium–reduced graphene oxide composite as anode for high performance lithium-ion batteries. RSC Advances, 2014, 4, 58184-58189.	3.6	22
891	Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nature Communications, 2014, 5, 5381.	12.8	180
892	Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenchingâ€Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd ³⁺ â€Sensitized Nanoparticles. Advanced Materials, 2014, 26, 2831-2837.	21.0	405
893	Understanding glass-forming ability through sluggish crystallization of atomically thin metallic glassy films. Applied Physics Letters, 2014, 105, .	3.3	16
894	Electrochemical behavior and surface structural change of LiMn ₂ O ₄ charged to 5.1 V. Journal of Materials Chemistry A, 2014, 2, 14519-14527.	10.3	54
895	Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite. Nanoscale, 2014, 6, 7817.	5.6	54
896	A general and rapid synthesis of metal sulphides hollow spheres that have properties enhanced by salt-assisted aerosol decomposition: a case of ZnS and other multicomponent solid solutions. Journal of Materials Chemistry C, 2014, 2, 8564-8568.	5.5	8
897	The structural transitions of C ₆₀ nanowhiskers under an electric field characterized by in situ transmission electron microscopy and electron energy-loss spectroscopy. Nanoscale, 2014, 6, 6585-6589.	5.6	4
898	Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO ₂ @BaTiO ₃ nanofibers. Nanoscale, 2014, 6, 6701-6709.	5.6	115
899	RuSe/reduced graphene oxide: an efficient electrocatalyst for VO ²⁺ /VO ₂ ⁺ redox couples in vanadium redox flow batteries. RSC Advances, 2014, 4, 20379-20381.	3.6	31
900	Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. Nanoscale, 2014, 6, 4532-4537.	5.6	113

#	Article	IF	Citations
901	A New Ferroelectric Phase of <scp> <scp> YMnO </scp> </scp> ₃ Induced by Oxygen†Vacancy Ordering. Journal of the American Ceramic Society, 2014, 97, 1264-1268.	3.8	10
902	Polarity-manipulation based on nanoscale structural transformation on strained 2D MgO. Journal Physics D: Applied Physics, 2014, 47, 105303.	2.8	8
903	A phase transfer assisted solvo-thermal strategy for the synthesis of REF3 and Ln3+-doped REF3 nano-/microcrystals. Journal of Colloid and Interface Science, 2014, 436, 171-178.	9.4	6
904	Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon, 2014, 78, 455-462.	10.3	146
905	Direct imaging of layered O3- and P2-Na _x Fe _{1/2} Mn _{1/2} O ₂ structures at the atomic scale. Physical Chemistry Chemical Physics, 2014, 16, 21946-21952.	2.8	50
906	Influence of Gold Nanoparticles Anchored to Carbon Nanotubes on Formation and Decomposition of Li ₂ O ₂ in Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry C, 2014, 118, 7344-7350.	3.1	41
907	Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale, 2014, 6, 693-698.	5.6	251
908	Insight into Enhanced Cycling Performance of Li–O2 Batteries Based on Binary CoSe2/CoO Nanocomposite Electrodes. Journal of Physical Chemistry Letters, 2014, 5, 615-621.	4.6	52
909	New Insight in Understanding Oxygen Reduction and Evolution in Solid-State Lithium–Oxygen Batteries Using an in Situ Environmental Scanning Electron Microscope. Nano Letters, 2014, 14, 4245-4249.	9.1	104
910	An Ultrastable Anode for Longâ€Life Roomâ€Temperature Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 8963-8969.	13.8	126
911	Interfacial Effects in Iron-Nickel Hydroxide–Platinum Nanoparticles Enhance Catalytic Oxidation. Science, 2014, 344, 495-499.	12.6	591
912	Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li4Ti5O12 nanoparticles embedded in carbon nanofibers. RSC Advances, 2014, 4, 25220.	3.6	24
913	Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries. Journal of Power Sources, 2014, 266, 323-331.	7.8	60
914	High-performance self-organized Si nanocomposite anode for lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 291-300.	12.9	10
915	A new non-destructive readout by using photo-recovered surface potential contrast. Scientific Reports, 2014, 4, 6980.	3.3	18
916	In situ TEM Observation of Resistance Switching in Titanate Based Device. Scientific Reports, 2014, 4, 3890.	3.3	32
917	Atomic-scale structure of nearly-equilibrated electrode materials under lithiation/delithiation for lithium-ion batteries. Scientia Sinica Chimica, 2014, 44, 295-308.	0.4	4
918	An FeF ₃ \hat{A} ·0.5H ₂ O Polytype: A Microporous Framework Compound with Intersecting Tunnels for Li and Na Batteries. Journal of the American Chemical Society, 2013, 135, 11425-11428.	13.7	177

#	Article	IF	CITATIONS
919	Mesoporous Cobalt Molybdenum Nitride: A Highly Active Bifunctional Electrocatalyst and Its Application in Lithium–O ₂ Batteries. Journal of Physical Chemistry C, 2013, 117, 858-865.	3.1	141
920	Parallel field magnetoresistance in topological insulator thin films. Physical Review B, 2013, 88, .	3.2	63
921	In situ electron holography study of charge distribution in high- $\hat{\mathbf{I}}^2$ charge-trapping memory. Nature Communications, 2013, 4, 2764.	12.8	60
922	Molybdenum Nitride/N-Doped Carbon Nanospheres for Lithium-O ₂ Battery Cathode Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3677-3682.	8.0	90
923	Direct Observation of Multiferroic Vortex Domains in YMnO3. Scientific Reports, 2013, 3, 2741.	3.3	56
924	Nitridated mesoporous Li4Ti5O12 spheres for high-rate lithium-ion batteries anode material. Journal of Solid State Electrochemistry, 2013, 17, 1479-1485.	2.5	28
925	Electrodeposition of nanostructured cobalt selenide films towards high performance counter electrodes in dye-sensitized solar cells. RSC Advances, 2013, 3, 16528.	3.6	71
926	Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li–O2 batteries. Chemical Communications, 2013, 49, 3540.	4.1	167
927	Size-controlled synthesis and morphology evolution of bismuth trifluoridenanocrystalsvia a novel solvent extraction route. Nanoscale, 2013, 5, 518-522.	5.6	20
928	Observation of the defect states in individual Co-doped ZnO dilute magnetic semiconducting nanostructures by electron energy-loss spectroscopy. Scripta Materialia, 2013, 69, 262-265.	5.2	1
929	Highly reversible lithium storage in Si (core)–hollow carbon nanofibers (sheath) nanocomposites. Nanoscale, 2013, 5, 2647.	5.6	60
930	Spontaneous Structural Distortion and Quasiâ€Oneâ€Dimensional Quantum Confinement in a Singleâ€Phase Compound. Advanced Materials, 2013, 25, 218-222.	21.0	8
931	Electrostatic assembly of mesoporous Li4Ti5O12/graphene hybrid as high-rate anode materials. Scripta Materialia, 2013, 69, 171-174.	5.2	25
932	Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nature Communications, 2013, 4, 1870.	12.8	628
933	Threeâ€Dimensional (3D) Bicontinuous Au/Amorphousâ€Ge Thin Films as Fast and Highâ€Capacity Anodes for Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 281-285.	19.5	115
934	Coaxial Ni _{<i>x</i>} Co _{2<i>x</i>} (OH) _{6<i>x</i>} /TiN Nanotube Arrays as Supercapacitor Electrodes. ACS Nano, 2013, 7, 5430-5436.	14.6	188
935	Atomic Structure of Li ₂ MnO ₃ after Partial Delithiation and Reâ€Lithiation. Advanced Energy Materials, 2013, 3, 1358-1367.	19.5	211
936	Preparation of Silicon@Silicon Oxide Core–Shell Nanowires from a Silica Precursor toward a High Energy Density Li-Ion Battery Anode. ACS Applied Materials & Density Li-Ion Battery Access A	8.0	75

#	Article	IF	Citations
937	Dielectric and insulating properties of SrTiO3/Si heterostructure controlled by cation concentration. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2404-2409.	5.1	2
938	Oxygen polarity and interfacial atomic arrangement in an Mg _{<i>x</i>} D/C-MgO/sapphire heterostructure. Journal Physics D: Applied Physics, 2013, 46, 145303.	2.8	3
939	Electronic transport and photovoltaic properties in Bi 2 Sr 2 Co 2 O y epitaxial heterostructures. Europhysics Letters, 2013, 103, 47006.	2.0	3
940	Crucial role played by interface and oxygen content in magnetic properties of ultrathin manganite films. Applied Physics Letters, 2013, 102, .	3.3	24
941	Correlation between evolution of resistive switching and oxygen vacancy configuration in La _{0.5} Ca _{0.5} MnO ₃ based memristive devices. Nanotechnology, 2012, 23, 265202.	2.6	19
942	Atomic and electronic structures of Zr-(Co,Ni,Cu)-Al metallic glasses. Applied Physics Letters, 2012, 101, .	3.3	19
943	Origin of ferromagnetism and oxygen-vacancy ordering induced cross-controlled magnetoelectric offects at room temperature, lournal of Applied Physics, 2012, 111 math	2.5	35
944	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>R</mml:mi> MnO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td></td><td></td></mml:mrow<></mml:msub></mml:math 		

#	Article	IF	CITATIONS
955	Rutile-TiO ₂ Nanocoating for a High-Rate Li ₄ Ti ₅ O ₁₂ Anode of a Lithium-lon Battery. Journal of the American Chemical Society, 2012, 134, 7874-7879.	13.7	602
956	Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes. Journal of Solid State Electrochemistry, 2012, 16, 3341-3348.	2.5	56
957	Manganese monoxide/titanium nitride composite as high performance anode material for rechargeable Li-ion batteries. Electrochimica Acta, 2012, 85, 345-351.	5.2	28
958	Transmission electron microscopy observations of structural modulation in the phase transition from α-Zr to ω-Zr induced by shear strain. Scripta Materialia, 2012, 67, 653-656.	5.2	15
959	Real-Time Visualization of Convective Transportation of Solid Materials at Nanoscale. Nano Letters, 2012, 12, 6126-6132.	9.1	63
960	A novel assembly of LiFePO4 microspheres from nanoplates. CrystEngComm, 2012, 14, 4344.	2.6	24
961	Thickness-dependent voltage-modulated magnetism in multiferroic heterostructures. Applied Physics Letters, 2012, 100, .	3.3	61
962	Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. Nanoscale, 2012, 4, 3673.	5.6	52
963	New Insight into the Atomic Structure of Electrochemically Delithiated O3-Li _(1–<i>x</i>) CoO ₂ (0 ≠ <i>x</i> ≠0.5) Nanoparticles. Nano Letters, 2012, 6192-6197.	12,1	128
964	Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2012, 4, 658-664.	8.0	331
965	Evidence for a Crucial Role Played by Oxygen Vacancies in LaMnO ₃ Resistive Switching Memories. Small, 2012, 8, 1279-1284.	10.0	146
966	Highly ordered staging structural interface between LiFePO4 and FePO4. Physical Chemistry Chemical Physics, 2012, 14, 5363.	2.8	53
967	Enhancement of the Li Conductivity in LiF by Introducing Glass/Crystal Interfaces. Advanced Functional Materials, 2012, 22, 1145-1149.	14.9	104
968	Lithium Storage in Li ₄ Ti ₅ O ₁₂ Spinel: The Full Static Picture from Electron Microscopy. Advanced Materials, 2012, 24, 3233-3238.	21.0	269
969	Threeâ€Dimensional Porous Coreâ€Shell Sn@Carbon Composite Anodes for Highâ€Performance Lithiumâ€lon Battery Applications. Advanced Energy Materials, 2012, 2, 238-244.	19.5	223
970	Nanoporous tree-like SiO2 films fabricated by sol–gel assisted electrostatic spray deposition. Microporous and Mesoporous Materials, 2012, 151, 488-494.	4.4	33
971	Hierarchically Macroporous and Mesoporous Sponge-Like Fe ₃ O ₄ Thin Film Electrodes for Application in Li-Ion Batteries. Nanoscience and Nanotechnology Letters, 2012, 4, 983-988.	0.4	1
972	Carbon Nanotube Wiring of Electrodes for High-Rate Lithium Batteries Using an Imidazolium-Based Ionic Liquid Precursor as Dispersant and Binder: A Case Study on Iron Fluoride Nanoparticles. ACS Nano, 2011, 5, 2930-2938.	14.6	149

#	Article	IF	Citations
973	Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. Physical Review B, 2011, 83, .	3.2	81
974	Direct Observation of Lithium Staging in Partially Delithiated LiFePO ₄ at Atomic Resolution. Journal of the American Chemical Society, 2011, 133, 4661-4663.	13.7	219
975	One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy and Environmental Science, 2011, 4, 3502.	30.8	221
976	Atom-resolved imaging of ordered defect superstructures at individual grain boundaries. Nature, 2011, 479, 380-383.	27.8	219
977	Facile Preparation of Mesoporous Titanium Nitride Microspheres for Electrochemical Energy Storage. ACS Applied Materials & Diterfaces, 2011, 3, 93-98.	8.0	142
978	Molybdenum nitride based hybrid cathode for rechargeable lithium–O2 batteries. Chemical Communications, 2011, 47, 11291.	4.1	115
979	Atomic-scale investigation on lithium storage mechanism in TiNb2O7,. Energy and Environmental Science, 2011, 4, 2638.	30.8	256
980	A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. Journal of Materials Chemistry, 2011, 21, 11916.	6.7	96
981	Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core–shell Structures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2011, 3, 3058-3063.	8.0	183
982	Structurally enhanced anelasticity in Zr-based bulk metallic glasses. Scripta Materialia, 2011, 64, 946-949.	5.2	5
983	TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin, 2011, 46, 835-839.	5.2	75
984	Electrically Induced Ferromagnetism at Room Temperature in Cobalt-Doped Titanium Dioxide. Science, 2011, 332, 1065-1067.	12.6	439
985	Thermal stability of Al/nanocrystalline-Si bilayers investigated by in situ heating energy-filtered transmission electron microscopy. Journal of Materials Science, 2011, 46, 4314-4317.	3.7	5
986	A Mesoporous Ironâ€Based Fluoride Cathode of Tunnel Structure for Rechargeable Lithium Batteries. Advanced Functional Materials, 2011, 21, 1391-1397.	14.9	149
987	lonic Spaceâ€Charge Depletion in Lithium Fluoride Thin Films on Sapphire (0001) Substrates. Advanced Functional Materials, 2011, 21, 2901-2905.	14.9	27
988	Metal atalyzed Growth of Semiconductor Nanostructures Without Solubility and Diffusivity Constraints. Advanced Materials, 2011, 23, 854-859.	21.0	36
989	Li Storage in 3D Nanoporous Auâ€Supported Nanocrystalline Tin. Advanced Materials, 2011, 23, 2443-2447.	21.0	198
990	Electrospinning of Highly Electroactive Carbonâ€Coated Singleâ€Crystalline LiFePO ₄ Nanowires. Angewandte Chemie - International Edition, 2011, 50, 6278-6282.	13.8	223

#	Article	IF	Citations
991	A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion. Biosensors and Bioelectronics, 2011, 26, 4088-4094.	10.1	34
992	Relation between icosahedral short-range ordering and plastic deformation in Zr–Nb–Cu–Ni–Al bulk metallic glasses. Acta Materialia, 2011, 59, 2814-2822.	7.9	55
993	Epitaxial layered cobaltite NaxCoO2 thin films grown on planar and vicinal cut substrates. Journal of Crystal Growth, 2011, 328, 34-38.	1.5	14
994	Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries. Thin Solid Films, 2011, 519, 5978-5982.	1.8	42
995	Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass. Nanotechnology, 2011, 22, 095704.	2.6	26
996	Direct Imaging of Lithium Ions Using Aberration-Corrected Annular-Bright-Field Scanning Transmission Electron Microscopy and Associated Contrast Mechanisms. Materials Express, 2011, 1, 43-50.	0.5	20
997	Modulated Na\$_{2}\$Ti\$_{4}\$O\$_{9}\$:Zr Nanobelt via Site-Specific Zr Doping. Applied Physics Express, 2011, 4, 085003.	2.4	3
998	Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors. Applied Physics Letters, 2011, 98, .	3.3	40
999	EFTEM study of surface plasmon resonances in silver nanoholes. Ultramicroscopy, 2010, 110, 1094-1100.	1.9	16
1000	Preparation and characterization of size-controlled CeO2 nanoparticles coated with SiO2. Journal of Nanoparticle Research, 2010, 12, 2045-2049.	1.9	14
1001	A Carbon/Titanium Vanadium Nitride Composite for Lithium Storage. ChemPhysChem, 2010, 11, 3219-3223.	2.1	49
1002	Reversible Storage of Lithium in Silverâ€Coated Threeâ€Dimensional Macroporous Silicon. Advanced Materials, 2010, 22, 2247-2250.	21.0	558
1003	Lowâ€Temperature Ionicâ€Liquidâ€Based Synthesis of Nanostructured Ironâ€Based Fluoride Cathodes for Lithium Batteries. Advanced Materials, 2010, 22, 3650-3654.	21.0	209
1004	A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochimica Acta, 2010, 55, 985-988.	5.2	77
1005	Flux-induced structural modification and phase transformations in a Pd40Ni40Si4P16 bulk-glassy alloy. Acta Materialia, 2010, 58, 5886-5897.	7.9	28
1006	Porous SnO ₂ /CNT composite anodes: Influence of composition and deposition temperature on the electrochemical performance. Journal of Materials Research, 2010, 25, 1554-1560.	2.6	12
1007	Correlating the structural, chemical, and optical properties at nanometer resolution. Journal of Applied Physics, 2010, 107, 013501.	2.5	9
1008	Direct bandgap measurements in a three-dimensionally macroporous silicon 9R polytype using monochromated transmission electron microscope. Applied Physics Letters, 2010, 97, .	3.3	11

#	Article	IF	Citations
1009	Atomic-scale structure and electronic property of the LaAlO3/TiO2 interface. Journal of Applied Physics, 2010, 108, .	2.5	49
1010	Facile and Controllable Growth of ZnO 1D Nanostructure Arrays on Zn Substrate by Hydrothermal Process. Journal of Nanoscience and Nanotechnology, 2010, 10, 3123-3130.	0.9	4
1011	Expanding Micelle Nanolithography to the Self-Assembly of Multicomponent Coreâ^'Shell Nanoparticles. Journal of the American Chemical Society, 2010, 132, 10671-10673.	13.7	14
1012	Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chemical Communications, 2010, 46, 3905.	4.1	270
1013	Synthesis and characterization of N-rich single crystalline SiOxNy nanowires with three-dimensional branches. Applied Physics Letters, 2009, 94, 231903.	3.3	6
1014	Encapsulation of Sn@carbon Nanoparticles in Bambooâ€like Hollow Carbon Nanofibers as an Anode Material in Lithiumâ€Based Batteries. Angewandte Chemie - International Edition, 2009, 48, 6485-6489.	13.8	551
1015	Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy. Ultramicroscopy, 2009, 109, 1164-1170.	1.9	28
1016	Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries. Electrochimica Acta, 2009, 54, 7227-7230.	5.2	80
1017	Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. Optics Letters, 2009, 34, 1003.	3.3	77
1018	Phase separation in GaN/AlGaN quantum dots. Applied Physics Letters, 2009, 95, 141901.	3.3	14
1019	Tin Nanoparticles Encapsulated in Porous Multichannel Carbon Microtubes: Preparation by Single-Nozzle Electrospinning and Application as Anode Material for High-Performance Li-Based Batteries. Journal of the American Chemical Society, 2009, 131, 15984-15985.	13.7	404
1020	A Germanium–Carbon Nanocomposite Material for Lithium Batteries. Advanced Materials, 2008, 20, 3079-3083.	21.0	271
1021	Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorusâ^'Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2008, 2, 441-448.	14.6	192
1022	CVD catalytic growth of single-walled carbon nanotubes with a selective diameter distribution. Diamond and Related Materials, 2008, 17, 66-71.	3.9	7
1023	Experimental realization of graded L1-FePt/Fe composite media with perpendicular magnetization. Journal of Applied Physics, 2008, 104 , .	2.5	74
1024	VEELS band gap measurements using monochromated electrons. Journal of Physics: Conference Series, 2008, 126, 012005.	0.4	4
1025	Band gap mapping using monochromated electrons. , 2008, , 381-382.		O
1026	Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Physical Review B, 2007, 75, .	3.2	103

#	Article	IF	Citations
1027	Interface properties of an AlN/(AlN) x (SiC)1-x /4H-SiC heterostructure. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3720-3725.	1.8	7
1028	Recent progress towards the development of ferromagnetic nitride semiconductors for spintronic applications. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2729-2737.	1.8	27
1029	Decorating carbon nanotubes with nanostructured nickel particles via chemical methods. Chemical Physics Letters, 2006, 431, 104-109.	2.6	40
1030	Internally shunted Josephson junctions with barriers tuned near the metal–insulator transition for RSFQ logic applications. Superconductor Science and Technology, 2006, 19, 719-731.	3.5	21
1031	Characterization of Al(Cr)N and Ga(Cr)N dilute magnetic semiconductors. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1395-1397.	2.3	74
1032	Electron microscopy studies of epitaxial MgB2 superconducting thin films grown by in situ reactive evaporation. Journal of Crystal Growth, 2005, 280, 602-611.	1.5	10
1033	The role of Cr substitution on the ferromagnetic properties of Ga1â^'xCrxN. Applied Physics Letters, 2005, 86, 012504.	3.3	41
1034	Production and Characterization of Single-Crystal FeCo Nanowires Inside Carbon Nanotubes. Nano Letters, 2005, 5, 467-472.	9.1	167
1035	Observation of ferromagnetism above 900K in Cr–GaN and Cr–AlN. Applied Physics Letters, 2004, 85, 4076-4078.	3.3	207
1036	Thermochemical analysis of MgB2 synthesis by molecular-beam epitaxy. Journal of Crystal Growth, 2004, 270, 107-112.	1.5	15
1037	Synthesis and characterization of high quality ferromagnetic Cr-doped GaN and AlN thin films with Curie temperatures above 900K. Materials Research Society Symposia Proceedings, 2003, 798, 12.	0.1	3
1038	Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films. Applied Physics Letters, 2003, 82, 3047-3049.	3.3	166
1039	Fabrication of Alkali Metal Boride: Honeycombâ€Like Structured NaB 4 with High Hardness and Excellent Electrical Conductivity. Advanced Functional Materials, 0, , 2110872.	14.9	9
1040	Defect-Rich, Candied Haws-Shaped AuPtNi Alloy Nanostructures for Highly Efficient Electrocatalysis. CCS Chemistry, 0, , 24-30.	7.8	0
1041	Atomically Dispersed MoO _{<i>x</i>} on Rhodium Metallene Boosts Electrocatalyzed Alkaline Hydrogen Evolution. Angewandte Chemie, 0, , .	2.0	7