List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/598632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Probabilistic Project Cost Estimates. IEEE Transactions on Engineering Management, 2023, 70, 3481-3496.	2.4	2
2	When should we (not) use the mean magnitude of relative error (MMRE) as an error measure in software development effort estimation?. Information and Software Technology, 2022, 143, 106784.	3.0	5
3	Relative estimates of software development effort: Are they more accurate or less time-consuming to produce than absolute estimates, and to what extent are they person-independent?. Information and Software Technology, 2022, 143, 106782.	3.0	2
4	When 2 + 2 should be 5: The summation fallacy in time prediction. Journal of Behavioral Decision Making, 2022, 35, .	1.0	0
5	Benefits management in software development: A systematic review of empirical studies. IET Software, 2021, 15, 1-24.	1.5	9
6	A field experiment on trialsourcing and the effect of contract types on outsourced software development. Information and Software Technology, 2021, 134, 106559.	3.0	2
7	Team Resource Management Decisions in Software Development Projects. , 2021, , .		0
8	Sequence effects in the estimation of software development effort. Journal of Systems and Software, 2020, 159, 110448.	3.3	10
9	How to pose for a professional photo: The effect of three facial expressions on perception of competence of a software developer. Australian Journal of Psychology, 2020, 72, 257-266.	1.4	2
10	Relations Between Effort Estimates, Skill Indicators, and Measured Programming Skill. IEEE Transactions on Software Engineering, 2020, , 1-1.	4.3	4
11	Practices connected to perceived client benefits of software projects. IET Software, 2020, 14, 677-683.	1.5	2
12	Benefits management and agile practices in software projects: how perceived benefits are impacted. , 2020, , .		7
13	Evaluating probabilistic software development effort estimates: Maximizing informativeness subject to calibration. Information and Software Technology, 2019, 115, 93-96.	3.0	6
14	Relationships Between Project Size, Agile Practices, and Successful Software Development: Results and Analysis. IEEE Software, 2019, 36, 39-43.	2.1	26
15	Looking Back on Previous Estimation Error as a Method to Improve the Uncertainty Assessment of Benefits and Costs of Software Development Projects. , 2018, , .		4
16	An experimental evaluation of a de-biasing intervention for professional software developers. , 2018, ,		13
17	Do Agile Methods Work for Large Software Projects?. Lecture Notes in Business Information Processing, 2018, , 179-190.	0.8	30

18 Uncertainty of Time Predictions. , 2018, , 71-79.

#	Article	IF	CITATIONS
19	Time Predictions: Matching the Method to the Situation. , 2018, , 103-107.		Ο
20	How We Predict Time Usage. , 2018, , 5-11.		1
21	Time Prediction Biases. , 2018, , 55-70.		1
22	Overoptimistic Predictions. , 2018, , 35-54.		2
23	Time Prediction Methods and Principles. , 2018, , 81-102.		Ο
24	Guest editorial for special section on success and failure in software engineering. Empirical Software Engineering, 2017, 22, 2281-2297.	3.0	5
25	Direct and indirect connections between type of contract and software project outcome. International Journal of Project Management, 2017, 35, 1573-1586.	2.7	27
26	What Contributes to the Success of IT Projects? Success Factors, Challenges and Lessons Learned from an Empirical Study of Software Projects in the Norwegian Public Sector. , 2017, , .		18
27	Unit effects in software project effort estimation: Work-hours gives lower effort estimates than workdays. Journal of Systems and Software, 2016, 117, 274-281.	3.3	17
28	A survey on the characteristics of projects with success in delivering client benefits. Information and Software Technology, 2016, 78, 83-94.	3.0	45
29	Better Selection of Software Providers through Trialsourcing. IEEE Software, 2016, 33, 48-53.	2.1	79
30	Incorrect results in software engineering experiments: How to improve research practices. Journal of Systems and Software, 2016, 116, 133-145.	3.3	33
31	The Use of Precision of Software Development Effort Estimates to Communicate Uncertainty. Lecture Notes in Business Information Processing, 2016, , 156-168.	0.8	6
32	Numerical anchors and their strong effects on software development effort estimates. Journal of Systems and Software, 2016, 116, 49-56.	3.3	21
33	Believing is Seeing: Confirmation Bias Studies in Software Engineering. , 2015, , .		4
34	The effect of the time unit on software development effort estimates. , 2015, , .		1
35	Fallacies and Biases when Adding Effort Estimates. , 2014, , .		1
36	Communication of software cost estimates. , 2014, , .		7

#	Article	IF	CITATIONS
37	What We Do and Don't Know about Software Development Effort Estimation. IEEE Software, 2014, 31, 37-40.	2.1	43
38	Failure factors of small software projects at a global outsourcing marketplace. Journal of Systems and Software, 2014, 92, 157-169.	3.3	16
39	The influence of selection bias on effort overruns in software development projects. Information and Software Technology, 2013, 55, 1640-1650.	3.0	22
40	Relative Estimation of Software Development Effort: It Matters with What and How You Compare. IEEE Software, 2013, 30, 74-79.	2.1	17
41	Software Development Estimation Biases: The Role of Interdependence. IEEE Transactions on Software Engineering, 2012, 38, 677-693.	4.3	26
42	Interpretation problems related to the use of regression models to decide on economy of scale in software development. Journal of Systems and Software, 2012, 85, 2494-2503.	3.3	5
43	How does project size affect cost estimation error? Statistical artifacts and methodological challenges. International Journal of Project Management, 2012, 30, 839-849.	2.7	30
44	From origami to software development: A review of studies on judgment-based predictions of performance time Psychological Bulletin, 2012, 138, 238-271.	5.5	90
45	The Impact of Irrelevant and Misleading Information on Software Development Effort Estimates: A Randomized Controlled Field Experiment. IEEE Transactions on Software Engineering, 2011, 37, 695-707.	4.3	43
46	Contrasting ideal and realistic conditions as a means to improve judgment-based software development effort estimation. Information and Software Technology, 2011, 53, 1382-1390.	3.0	18
47	To read two pages, I need 5 minutes, but give me 5 minutes and I will read four: how to change productivity estimates by inverting the question. Applied Cognitive Psychology, 2011, 25, 314-323.	0.9	12
48	Selection of strategies in judgment-based effort estimation. Journal of Systems and Software, 2010, 83, 1039-1050.	3.3	9
49	The effects of request formats on judgment-based effort estimation. Journal of Systems and Software, 2010, 83, 29-36.	3.3	32
50	Identification of more risks can lead to increased over-optimism of and over-confidence in software development effort estimates. Information and Software Technology, 2010, 52, 506-516.	3.0	29
51	Software Development Effort Estimation — Demystifying and Improving Expert Estimation. , 2010, , 381-403.		9
52	Software Development Effort Estimation: Formal Models or Expert Judgment?. IEEE Software, 2009, 26, 14-19.	2.1	100
53	How to Avoid Selecting Bids Based on Overoptimistic Cost Estimates. IEEE Software, 2009, 26, 79-84.	2.1	14
54	The Impact of Lessons-Learned Sessions on Effort Estimation and Uncertainty Assessments. IEEE Transactions on Software Engineering, 2009, 35, 368-383.	4.3	63

#	Article	IF	CITATIONS
55	The Role of Deliberate Artificial Design Elements in Software Engineering Experiments. IEEE Transactions on Software Engineering, 2008, 34, 242-259.	4.3	49
56	The role of outcome feedback in improving the uncertainty assessment of software development effort estimates. ACM Transactions on Software Engineering and Methodology, 2008, 17, 1-35.	4.8	28
57	The Impact of Irrelevant Information on Estimates of Software Development Effort. Proceedings / Australian Software Engineering Conference, 2007, , .	0.0	9
58	The Future of Empirical Methods in Software Engineering Research. , 2007, , .		205
59	A Systematic Review of Software Development Cost Estimation Studies. IEEE Transactions on Software Engineering, 2007, 33, 33-53.	4.3	559
60	Characteristics of software engineers with optimistic predictions. Journal of Systems and Software, 2007, 80, 1472-1482.	3.3	22
61	Inconsistency of expert judgment-based estimates of software development effort. Journal of Systems and Software, 2007, 80, 1770-1777.	3.3	51
62	Forecasting of software development work effort: Evidence on expert judgement and formal models. International Journal of Forecasting, 2007, 23, 449-462.	3.9	120
63	Expert Estimation of Software Development Cost: Learning through Feedback. , 2006, , 489-506.		1
64	Software effort estimation terminology: The tower of Babel. Information and Software Technology, 2006, 48, 302-310.	3.0	67
65	How large are software cost overruns? A review of the 1994 CHAOS report. Information and Software Technology, 2006, 48, 297-301.	3.0	138
66	The effects of the format of software project bidding processes. International Journal of Project Management, 2006, 24, 522-528.	2.7	16
67	A framework for the analysis of software cost estimation accuracy. , 2006, , .		28
68	Expert Estimation of Web-Development Projects: Are Software Professionals in Technical Roles More Optimistic Than Those in Non-Technical Roles?. Empirical Software Engineering, 2005, 10, 7-30.	3.0	29
69	When 90% confidence intervals are 50% certain: on the credibility of credible intervals. Applied Cognitive Psychology, 2005, 19, 455-475.	0.9	103
70	Collecting Feedback during Software Engineering Experiments. Empirical Software Engineering, 2005, 10, 113-147.	3.0	33
71	Evidence-based guidelines for assessment of software development cost uncertainty. IEEE Transactions on Software Engineering, 2005, 31, 942-954.	4.3	43
72	A comparison of software project overruns - flexible versus sequential development models. IEEE Transactions on Software Engineering, 2005, 31, 754-766.	4.3	78

#	Article	IF	CITATIONS
73	Evidence-based software engineering for practitioners. IEEE Software, 2005, 22, 58-65.	2.1	339
74	Practical guidelines for expert-judgment-based software effort estimation. IEEE Software, 2005, 22, 57-63.	2.1	105
75	Regression Models of Software Development Effort Estimation Accuracy and Bias. Empirical Software Engineering, 2004, 9, 297-314.	3.0	34
76	Group Processes in Software Effort Estimation. Empirical Software Engineering, 2004, 9, 315-334.	3.0	51
77	Top-down and bottom-up expert estimation of software development effort. Information and Software Technology, 2004, 46, 3-16.	3.0	87
78	The impact of customer expectation on software development effort estimates. International Journal of Project Management, 2004, 22, 317-325.	2.7	86
79	A review of studies on expert estimation of software development effort. Journal of Systems and Software, 2004, 70, 37-60.	3.3	399
80	Better sure than safe? Over-confidence in judgement based software development effort prediction intervals. Journal of Systems and Software, 2004, 70, 79-93.	3.3	99
81	Reasons for software effort estimation error: impact of respondent role, information collection approach, and data analysis method. IEEE Transactions on Software Engineering, 2004, 30, 993-1007.	4.3	80
82	Realism in assessment of effort estimation uncertainty: it matters how you ask. IEEE Transactions on Software Engineering, 2004, 30, 209-217.	4.3	57
83	An empirical study of software project bidding. IEEE Transactions on Software Engineering, 2004, 30, 953-969.	4.3	36
84	Eliminating Over-Confidence in Software Development Effort Estimates. Lecture Notes in Computer Science, 2004, , 174-184.	1.0	7
85	Does Use of Development Model Affect Estimation Accuracy and Bias?. Lecture Notes in Computer Science, 2004, , 17-29.	1.0	1
86	Software effort estimation by analogy and "regression toward the meanâ€: Journal of Systems and Software, 2003, 68, 253-262.	3.3	93
87	An effort prediction interval approach based on the empirical distribution of previous estimation accuracy. Information and Software Technology, 2003, 45, 123-136.	3.0	72
88	How much does a vacation cost?. Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 2003, 28, 5-5.	0.5	14
89	Challenges and Recommendations When Increasing the Realism of Controlled Software Engineering Experiments. Lecture Notes in Computer Science, 2003, , 24-38.	1.0	26

90 Combination of software development effort prediction intervals. , 2002, , .

12

#	Article	IF	CITATIONS
91	Impact of experience on maintenance skills. Journal of Software: Evolution and Process, 2002, 14, 123-146.	1.1	30
92	Can you Trust a Single Data Source Exploratory Software Engineering Case Study?. Empirical Software Engineering, 2002, 7, 9-26.	3.0	35
93	Impact of effort estimates on software project work. Information and Software Technology, 2001, 43, 939-948.	3.0	88
94	Assessing the Changeability of two Object-Oriented Design Alternativesa Controlled Experiment. Empirical Software Engineering, 2001, 6, 231-277.	3.0	36
95	Experience with the accuracy of software maintenance task effort prediction models. IEEE Transactions on Software Engineering, 1995, 21, 674-681.	4.3	208
96	An empirical study of software maintenance tasks. Journal of Software: Evolution and Process, 1995, 7, 27-48.	0.5	36