
Nariman A Enikeev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5986270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scripta Materialia, 2010, 63, 949-952.	2.6	274
2	Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy. Acta Materialia, 2014, 72, 125-136.	3.8	217
3	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, 10, 163-256.	4.1	215
4	Nanostructured titanium-based materials for medical implants: Modeling and development. Materials Science and Engineering Reports, 2014, 81, 1-19.	14.8	214
5	Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys. Acta Materialia, 2015, 98, 355-366.	3.8	211
6	Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 128-136.	2.6	150
7	Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Materials Letters, 2014, 136, 349-352.	1.3	118
8	Mechanical and electrical properties of an ultrafine grained Al–8.5 wt. % RE (RE = 5.4 wt.% Ce, 3.1 wt.%) Tj ETC	Qq <u>Q</u> Q 0 rg	BT /Overloci 112
9	Grain Boundary Segregation in UFG Alloys Processed by Severe Plastic Deformation. Advanced Engineering Materials, 2012, 14, 968-974.	1.6	82

10	Developing age-hardenable Al-Zr alloy by ultra-severe plastic deformation: Significance of supersaturation, segregation and precipitation on hardening and electrical conductivity. Acta Materialia, 2021, 203, 116503.	3.8	67
11	Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 370-383.	2.6	62
12	Enhancement of mechanical and electrical properties of Al-RE alloys by optimizing rare-earth concentration and thermo-mechanical treatment. Journal of Alloys and Compounds, 2018, 745, 696-704.	2.8	53
13	Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation. Journal of Materials Science and Technology, 2021, 91, 78-89.	5.6	51
14	Enhanced Mechanical Properties and Electrical Conductivity in Ultrafine-Grained Al 6101 Alloy Processed via ECAP-Conform. Metals, 2015, 5, 2148-2164.	1.0	50
15	Superior Strength and Multiple Strengthening Mechanisms in Nanocrystalline TWIP Steel. Scientific Reports, 2018, 8, 11200.	1.6	48
16	Bulk Nanostructured Materials with Multifunctional Properties. SpringerBriefs in Materials, 2015, , .	0.1	42
17	Mechanisms of precipitation induced by large strains in the Al-Cu system. Journal of Alloys and Compounds, 2017, 710, 736-747.	2.8	42
18	Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316	3.1	40

18 austenitic stainless steels. Applied Surface Science, 2017, 392, 1026-1035.

#	Article	IF	CITATIONS
19	Analysis of substructure evolution during simple shear of polycrystals by means of a combined viscoplastic self-consistent and disclination modeling approach. Acta Materialia, 2006, 54, 985-995.	3.8	37
20	Effect of the eutectic Al-(Ce,La) phase morphology on microstructure, mechanical properties, electrical conductivity and heat resistance of Al-4.5(Ce,La) alloy after SPD and subsequent annealing. Journal of Alloys and Compounds, 2019, 796, 321-330.	2.8	37
21	Formation of fully austenitic ultrafine-grained high strength state in metastable Cr–Ni–Ti stainless steel by severe plastic deformation. Materials Letters, 2016, 166, 276-279.	1.3	36
22	Strength enhancement induced by grain boundary solute segregations in ultrafine-grained alloys. International Journal of Plasticity, 2019, 123, 133-144.	4.1	35
23	Superstrength of ultrafine-grained aluminum alloys produced by severe plastic deformation. Doklady Physics, 2010, 55, 267-270.	0.2	31
24	Kinetic dislocation model of microstructure evolution during severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 619-623.	2.6	30
25	Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions. Journal of Nuclear Materials, 2017, 487, 96-104.	1.3	30
26	Structural and phase transformation in a TWIP steel subjected to high pressure torsion. Materials Letters, 2016, 166, 321-324.	1.3	27
27	Optimization of Strengthâ€Electrical Conductivity Properties in Al–2Fe Alloy by Severe Plastic Deformation and Heat Treatment. Advanced Engineering Materials, 2018, 20, 1700867.	1.6	24
28	Superstrength of nanostructured metals and alloys produced by severe plastic deformation. Physics of Metals and Metallography, 2012, 113, 1193-1201.	0.3	22
29	Annealing behavior of severely-deformed titanium Grade 4. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 89-101.	2.6	22
30	Post-treatment of additively manufactured Fe–Cr–Ni stainless steels by high pressure torsion: TRIP effect. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 811, 141086.	2.6	22
31	Microstructural Changes and Strengthening of Austenitic Stainless Steels during Rolling at 473 K. Metals, 2020, 10, 1614.	1.0	21
32	Biaxial Deformation Behavior and Enhanced Formability of Ultrafine-Grained Pure Copper. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2399-2408.	1.1	20
33	Superior Strength of Austenitic Steel Produced by Combined Processing, including Equal-Channel Angular Pressing and Rolling. Metals, 2016, 6, 310.	1.0	20
34	Fatigue Properties of Ultra-Fine Grained Al-Mg-Si Wires with Enhanced Mechanical Strength and Electrical Conductivity. Metals, 2018, 8, 1034.	1.0	20
35	Effect of initial grain size on the microstructure and mechanical properties of high-pressure torsion processed twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 164-167.	2.6	19
36	Modelling grain refinement in fcc metals during equal-channel angular pressing by route "C― International Journal of Materials Research, 2007, 98, 167-171.	0.1	16

#	Article	IF	CITATIONS
37	Room-temperature-deformation-induced chemical short-range ordering in a supersaturated ultrafine-grained Al-Zn alloy. Scripta Materialia, 2022, 210, 114423.	2.6	16
38	Grain Size Refinement due to Relaxation of Disclination Junction Configurations in the Course of Plastic Deformation of Polycrystals. Physics of the Solid State, 2005, 47, 845.	0.2	15
39	Irradiation resistance of a nanostructured 316 austenitic stainless steel. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012121.	0.3	15
40	Submicrocrystalline Austenitic Stainless Steel Processed by Cold or Warm High Pressure Torsion. Materials Science Forum, 0, 838-839, 398-403.	0.3	14
41	Influence of fine scale features on room temperature superplastic behaviour of an ultrafine-grained Al-30Zn alloy. Materials Letters, 2019, 254, 329-331.	1.3	14
42	Tailoring Extra-Strength of a TWIP Steel by Combination of Multi-Pass Equal-Channel Angular Pressing and Warm Rolling. Metals, 2021, 11, 518.	1.0	13
43	Microstructural evolution and mechanical properties of nanocrystalline Fe–Mn–Al–C steel processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142073.	2.6	13
44	X-ray analysis and computer simulation for grain size determination in nanostructured materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 110-114.	2.6	11
45	Observations of Texture in Large Scale HPT-Processed Cu. Materials Science Forum, 0, 584-586, 367-374.	0.3	11
46	Stability of the structure and properties of an ultrafine-grained Cr-Ni steel irradiated with neutrons in nuclear reactor core conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 365-372.	2.6	11
47	Radiation Tolerance of Ultrafine-Grained Materials Fabricated by Severe Plastic Deformation. Materials Transactions, 2019, 60, 1723-1731.	0.4	11
48	Three-dimensional numerical simulations of multi-pass equal-channel angular pressing by a variation difference method and comparison with experiment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 493, 148-159.	2.6	10
49	Effect of neutron irradiation on the microstructure and the mechanical and corrosion properties of the ultrafine-grained stainless Cr–Ni steel. Physics of Metals and Metallography, 2015, 116, 1270-1278.	0.3	10
50	The effect of tungsten on microstructure and mechanical performance of an ultrafine Fe-Cr steel. Materials Letters, 2018, 227, 292-295.	1.3	10
51	Peculiarities of Interactions of Alloying Elements with Grain Boundaries and the Formation of Segregations in Al–Mg and Al–Zn Alloys. Physics of Metals and Metallography, 2018, 119, 607-612.	0.3	10
52	Low-temperature plasticity in nanocrystalline titanium and copper. Physics of the Solid State, 2007, 49, 678-683.	0.2	7
53	Contribution of grain boundary related strain accommodation to deformation of ultrafine-grained palladium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 668, 255-262.	2.6	7
54	Tuning the Structure and the Mechanical Properties of Ultrafine Grain Al–Zn Alloys by Short Time Annealing. Reviews on Advanced Materials Science, 2018, 55, 61-68.	1.4	7

#	Article	IF	CITATIONS
55	A mechanism of grain nucleation during relaxation of the latent energy of junction disclinations in the course of plastic deformation. Technical Physics Letters, 2005, 31, 1015-1018.	0.2	6
56	Surface modification of low activation ferritic–martensitic steel EK-181 (Rusfer) by high temperature pulsed plasma flows. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 218-221.	0.6	6
57	Deformation of nanocrystalline binary aluminum alloys with segregation of Mg, Co and Ti at grain boundaries. Physics of Metals and Metallography, 2017, 118, 65-74.	0.3	6
58	Influence of Morphology of Intermetallic Particles on the Microstructure and Properties Evolution in Severely Deformed Al-Fe Alloys. Metals, 2021, 11, 815.	1.0	6
59	Influence of strain rate and Sn in solid solution on the grain refinement and crystalline defect density in severely deformed Cu. Materials Today Communications, 2021, 26, 101746.	0.9	5
60	Towards superstrength of nanostructured metals and alloys, produced by SPD. Metallic Materials, 2021, 49, 1-9.	0.2	5
61	Cryogenic impact toughness of a work hardened austenitic stainless steel. Materialia, 2022, 23, 101460.	1.3	5
62	On the effect of ECAP and subsequent cold rolling on the microstructure and properties of electromagnetically cast Al–Fe alloys. International Journal of Lightweight Materials and Manufacture, 2022, 5, 484-495.	1.3	5
63	Using intensive plastic deformations for manufacturing bulk nanostructure metallic materials. Mechanics of Solids, 2012, 47, 463-474.	0.3	4
64	The effect of neutron irradiation on the impact toughness of austenitic stainless steel in ultrafine-grained state. Journal of Nuclear Materials, 2021, 544, 152680.	1.3	4
65	Plasticity of an extra-strong nanocrystalline stainless steel controlled by the "dislocation-segregation―interaction. Materials Letters, 2021, 301, 130235.	1.3	4
66	Ultrafine-grained Al-Cu-Zr alloy with high-strength and enhanced plasticity. Materials Letters, 2021, 303, 130490.	1.3	4
67	Peculiarities of Strengthening of Al–Cu–Zr Alloy Structured by Severe Plastic Deformation. Physics of the Solid State, 2021, 63, 1744-1756.	0.2	4
68	A Physical Criterion for the Grain Subdivision during SPD. Solid State Phenomena, 2005, 101-102, 319-324.	0.3	3
69	Superstrength of nanostructured alloys produced by SPD processing. Journal of Physics: Conference Series, 2011, 291, 012029.	0.3	3
70	High strength state of UFG steel produced by severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012127.	0.3	3
71	Effect of combined loading on the microstructure and microhardness of austenitic steel. Letters on Materials, 2017, 7, 29-33.	0.2	3
72	Ultra-fine grained Al-Mg alloys with superior strength via physical simulation. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012042.	0.3	2

#	Article	IF	CITATIONS
73	Stability of the Ultrafine-Grained Structure of Austenitic Corrosion-Resistant Steels during Annealing. Physics of Metals and Metallography, 2021, 122, 775-781.	0.3	2
74	Investigation of Assemblies of Grain Boundary Dislocations in Nanostructured Copper by Computer Simulation. Materials Science Forum, 1999, 294-296, 207-210.	0.3	1
75	SPD-Induced Grain Boundary Segregations and Superior Strength in UFG Al Alloys. Materials Science Forum, 0, 667-669, 665-669.	0.3	1
76	Nanostructured Fe–Cr–W Steel Exhibits Enhanced Resistance to Selfâ€lon Irradiation. Advanced Engineering Materials, 2020, 22, 1901333.	1.6	1
77	Modeling of Grain Subdivision during Severe Plastic Deformation by VPSC Method Combined with Disclination Analysis. , 2006, , 61-66.		1
78	Computer Simulation for X-Ray Analysis of Nanostructured Cu Processed by Severe Plastic Deformation. Materials Science Forum, 2004, 443-444, 99-102.	0.3	0
79	Deformation Behaviour of ECAP Cu as Described by a Dislocation-Based Model. , 2005, , 245-250.		0
80	Influence of Deformation Temperature on the Effect of High Plasticity Implementation in Ultrafine-Grained Al–1.5Cu Alloy. Physics of the Solid State, 2021, 63, 1730-1738.	0.2	0
81	Effect of rolling temperature and thickness reduction on the strength of a 316L steel. AIP Conference Proceedings, 2022, , .	0.3	0
82	Microtexture evolutions in 304L and 316L stainless steels during rolling at 200°C and annealing. AIP Conference Proceedings, 2022, , .	0.3	0