
Yacov Finkelstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5986263/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anisotropy of the Proton Kinetic Energy as a Tool for Capturing Structural Transition in Water Confined in a Graphene Nanoslit Pore. Journal of Physical Chemistry Letters, 2022, 13, 455-461.	4.6	2
2	Proton dynamics in a single H2O confined in a Buckyball. Vibrational Spectroscopy, 2021, 116, 103287.	2.2	0
3	Microscopic Study of Proton Kinetic Energy Anomaly for Nanoconfined Water. Journal of Physical Chemistry B, 2020, 124, 190-198.	2.6	9
4	Oxidation induced cubic-tetragonal phase transformation in titanium hydride powders. International Journal of Hydrogen Energy, 2020, 45, 25043-25053.	7.1	5
5	Kinetic energy of oxygen atoms in water and in silica hydrogel. Chemical Physics, 2020, 533, 110716.	1.9	1
6	Thermal desorption kinetics of H2O and H2 from rapidly solidified Al-Zn-Mg alloy powders. Thermochimica Acta, 2020, 686, 178554.	2.7	5
7	Comment to "Dynamics of supercooled confined water measured by deep inelastic neutron scattering― Frontiers of Physics, 2019, 14, 1.	5.0	2
8	On H-dynamics of supercooled water confined in nanoporous silica. Chemical Physics, 2019, 523, 83-86.	1.9	2
9	The role of surface coarsening and sintering during thermal decomposition of titanium hydride. International Journal of Hydrogen Energy, 2019, 44, 6045-6054.	7.1	12
10	In situ detection of thermally induced porosity in additively manufactured and sintered objects. Journal of Materials Science, 2019, 54, 8665-8674.	3.7	27
11	Measuring the water content in freshly-deposited fingermarks. Forensic Science International, 2019, 294, 204-210.	2.2	18
12	Anisotropy of the proton kinetic energy in ice Ih. Surface Science, 2019, 679, 174-179.	1.9	2
13	On some controversy regarding \hat{l}_2 OH assignments in CsH2PO4. Vibrational Spectroscopy, 2018, 95, 75-79.	2.2	1
14	Anisotropy of the proton kinetic energy in CsH 2 PO 4 and KH 2 PO 4. Surface Science, 2018, 668, 112-116.	1.9	5
15	New method for measuring the time integral of neutron flux in a reactor. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 908, 155-158.	1.6	Ο
16	Non-isothermal hydrogen desorption from β-UH3: Kinetics and mechanism. Journal of Nuclear Materials, 2018, 510, 484-491.	2.7	4
17	Quantum behavior of water nano-confined in beryl. Journal of Chemical Physics, 2017, 146, 124307.	3.0	18
18	Applying Semi-Empirical Quantum Harmonic Calculations for Studying the Atomic Kinetic Energies in	0.2	8

Hydrogen Bonded Systems. Current Physical Chemistry, 2017, 7, .

Yacov Finkelstein

#	Article	IF	CITATIONS
19	On the Atomic Kinetic Energies in Ceramic Oxides. Journal of Materials Science and Chemical Engineering, 2017, 05, 17-27.	0.4	0
20	On the mean kinetic energy of the proton in strong hydrogen bonded systems. Journal of Chemical Physics, 2016, 144, 054302.	3.0	11
21	Proton dynamics in hydrogen-bonded systems. Molecular Physics, 2016, 114, 2108-2114.	1.7	7
22	Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra. Journal of Chemical Physics, 2015, 143, 104203.	3.0	22
23	Comparison between electron and neutron Compton scattering studies. EPJ Web of Conferences, 2015, 93, 02011.	0.3	4
24	Electron scattering as a tool to study zero-point kinetic energies of atoms in molecules. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 37-41.	1.4	6
25	Temperature dependence of the proton kinetic energy in water between 5 and 673K. Chemical Physics, 2014, 431-432, 58-63.	1.9	37
26	The role of the cation in the oxygen isotopic exchange in crystalline sulfate salt hydrates. Adsorption, 2013, 19, 821-833.	3.0	0
27	Proton dynamics in ice VII at high pressures. Journal of Chemical Physics, 2013, 139, 044716.	3.0	19
28	A New Route of Oxygen Isotope Exchange in the Solid Phase: Demonstration in CuSO4·5H2O. Journal of Physical Chemistry B, 2005, 109, 21197-21201.	2.6	4
29	Sensing the Physicochemical Nature of He and Ne in Micropores by Adsorption Measurements. Journal of Physical Chemistry B, 2005, 109, 11180-11185.	2.6	3
30	A continuous polymorphic transition of coordinating water molecules in CuSO4·5H2O. Journal of Physics and Chemistry of Solids, 2003, 64, 701-706.	4.0	9
31	Study of Type-A Zeolites. Part 2:Â Effect of Dehydration on the Effective Aperture Dimension. Journal of Physical Chemistry B, 2003, 107, 13414-13418.	2.6	5
32	Study of Type-A Zeolites. Part 1:Â Mechanism of He and Ne Encapsulation. Journal of Physical Chemistry B, 2003, 107, 9170-9174.	2.6	14
33	Encapsulation of He and Ne in Carbon Molecular Sieves. Langmuir, 2003, 19, 218-219.	3.5	5
34	Selective and reversible entrapment of He and Ne in NaA zeolite at atmospheric pressure. Journal of Chemical Physics, 2003, 118, 4221-4225.	3.0	5
35	Sieving Effect of Neon and Helium at High Temperature on Carbon Molecular Sieve Fibers. Langmuir, 2002, 18, 638-641.	3.5	6
36	Study of the anisotropy in the atomic momentum distributions in a Kapton film. Journal of Physics Condensed Matter, 2001, 13, 5053-5063.	1.8	3

Yacov Finkelstein

#	Article	IF	CITATIONS
37	Testing the lattice modes of NaCN by nuclear resonance photon scattering. Journal of Physics Condensed Matter, 2001, 13, 2473-2479.	1.8	0
38	Use of n-capture \hat{I}^3 -rays for studies in surface and solid state physics. AIP Conference Proceedings, 2000, , .	0.4	0
39	Study of the Papyex structure using neutron Compton scattering. Physica B: Condensed Matter, 2000, 291, 213-218.	2.7	13
40	Nuclear-resonance photon scattering study ofN2Omultilayers adsorbed on Grafoil at 12 K. Physical Review B, 2000, 61, 7700-7705.	3.2	6
41	A practical all-metal flange-seal for high and low temperatures. Review of Scientific Instruments, 2000, 71, 591-592.	1.3	1
42	Nuclear resonance photon scattering studies of N-2 adsorbed on grafoil and of NaNO2 single crystal. Journal of Research of the National Institute of Standards and Technology, 2000, 105, 159.	1.2	2
43	C ₂₄ Cs samples containing oriented N ₂ molecules. Journal of Materials Research, 1999, 14, 3130-3137.	2.6	3
44	Out-of-plane orientation of multilayer N 2 films adsorbed on Grafoil at 20 K. Surface Science, 1999, 437, 265-276.	1.9	10
45	Adsorption of N2 monolayers on Papyex in the liquid and vapor phases. Surface Science, 1999, 443, 89-98.	1.9	1
46	Anisotropic nuclear-resonance photon scattering from a single crystal ofNaNO2. Physical Review B, 1999, 59, 6211-6216.	3.2	5
47	Nondestructive determination of the 13C content in isotopic diamond by nuclear resonance fluorescence. Journal of Applied Physics, 1998, 83, 5484-5488.	2.5	16
48	Nuclear-resonance-photon-scattering study of the effective temperatures of diamond and of highly oriented pyrolytic graphite. Physical Review B, 1998, 58, 4166-4172.	3.2	8
49	Second Stage Physintercalation of N ₂ Molecules into C ₂₄ Rb. Molecular Crystals and Liquid Crystals, 1998, 310, 105-110.	0.3	0
50	Effective temperature of amorphous carbon studied using nuclear-resonance photon scattering. Physical Review B, 1997, 56, 187-193.	3.2	13
51	Effect of the temperature variation of γ-sources on the resonance scattering cross section. Nuclear Instruments & Methods in Physics Research B, 1997, 129, 250-256.	1.4	4
52	The mechanism of monensin-mediated cation exchange based on real time measurements. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1285, 131-145.	2.6	25
53	Tilt of N2 molecules physintercalated into C24K and C24Rb. Journal of Physics and Chemistry of Solids, 1996, 57, 909-913.	4.0	6
54	NO2adsorption on Grafoil between 297 and 12 K. Physical Review B, 1996, 53, 16006-16012.	3.2	19

#	Article	IF	CITATIONS
55	OrientedN2molecules intercalated inC24Rb. Physical Review B, 1995, 52, 5330-5334.	3.2	10