Michael A Letavic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5985828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacological characterization of a novel centrally permeable <scp>P2X7</scp> receptor antagonist: <scp>JNJ</scp> â€47965567. British Journal of Pharmacology, 2013, 170, 624-640.	5.4	148
2	Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. Journal of Neuroscience, 2016, 36, 5920-5932.	3.6	127
3	Pharmacology of a Novel Central Nervous System–Penetrant P2X7 Antagonist JNJ-42253432. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 628-641.	2.5	67
4	A Dipolar Cycloaddition Reaction To Access 6-Methyl-4,5,6,7-tetrahydro-1 <i>H</i> -[1,2,3]triazolo[4,5- <i>c</i>]pyridines Enables the Discovery Synthesis and Preclinical Profiling of a P2X7 Antagonist Clinical Candidate. Journal of Medicinal Chemistry, 2018, 61, 207-223.	6.4	58
5	Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models. PLoS ONE, 2016, 11, e0156468.	2.5	57
6	Neuropsychopharmacology of JNJ-55308942: evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology, 2018, 43, 2586-2596.	5.4	52
7	4-Methyl-6,7-dihydro-4 <i>H</i> -triazolo[4,5- <i>c</i>]pyridine-Based P2X7 Receptor Antagonists: Optimization of Pharmacokinetic Properties Leading to the Identification of a Clinical Candidate. Journal of Medicinal Chemistry, 2017, 60, 4559-4572.	6.4	51
8	PET Imaging of the P2X7 Ion Channel with a Novel Tracer [18F]JNJ-64413739 in a Rat Model of Neuroinflammation. Molecular Imaging and Biology, 2019, 21, 871-878.	2.6	50
9	Synthesis, SAR, and Pharmacological Characterization of Brain Penetrant P2X7 Receptor Antagonists. ACS Medicinal Chemistry Letters, 2015, 6, 671-676.	2.8	42
10	Synthesis and Pharmacological Characterization of Two Novel, Brain Penetrating P2X ₇ Antagonists. ACS Medicinal Chemistry Letters, 2013, 4, 419-422.	2.8	40
11	A novel radioligand for the ATP-gated ion channel P2X7: [3H] JNJ-54232334. European Journal of Pharmacology, 2015, 765, 551-559.	3.5	40
12	Preclinical Evaluation and Nonhuman Primate Receptor Occupancy Study of ¹⁸ F-JNJ-64413739, a PET Radioligand for P2X7 Receptors. Journal of Nuclear Medicine, 2019, 60, 1154-1159.	5.0	36
13	ldentification of (<i>R</i>)-(2-Chloro-3-(trifluoromethyl)phenyl)(1-(5-fluoropyridin-2-yl)-4-methyl-6,7-dihydro-1 <i>H</i> -imidazo[4 (JNJ 54166060), a Small Molecule Antagonist of the P2X7 receptor. Journal of Medicinal Chemistry, 2016, 59 8535-8548	,5-∢i≥c6.4	>]pyridin-5(4
14	Novel methyl substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones are P2X7 antagonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3157-3163.	2.2	30
15	Novel Phenyl-Substituted 5,6-Dihydro-[1,2,4]triazolo[4,3- <i>a</i>]pyrazine P2X7 Antagonists with Robust Target Engagement in Rat Brain. ACS Chemical Neuroscience, 2016, 7, 490-497.	3.5	23
16	Preclinical characterization of substituted 6,7-dihydro-[1,2,4]triazolo[4,3- a]pyrazin-8(5 H)-one P2X7 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 257-261.	2.2	20
17	Selective Inhibition of Orexin-2 Receptors Prevents Stress-Induced ACTH Release in Mice. Frontiers in Behavioral Neuroscience, 2017, 11, 83.	2.0	20
18	P2X7 receptor antagonists for the treatment of systemic inflammatory disorders. Progress in Medicinal Chemistry, 2020, 59, 63-99.	10.4	18

#	Article	IF	CITATIONS
19	Substituted 5,6-(Dihydropyrido[3,4- <i>d</i>]pyrimidin-7(8 <i>H</i>)-yl)-methanones as P2X7 Antagonists. ACS Chemical Neuroscience, 2016, 7, 498-504.	3.5	17
20	1 <i>H</i> -Pyrrolo[3,2- <i>b</i>]pyridine GluN2B-Selective Negative Allosteric Modulators. ACS Medicinal Chemistry Letters, 2019, 10, 261-266.	2.8	9
21	Design, Synthesis, and Preclinical Evaluation of 3-Methyl-6-(5-thiophenyl)-1,3-dihydro-imidazo[4,5- <i>b</i>]pyridin-2-ones as Selective GluN2B Negative Allosteric Modulators for the Treatment of Mood Disorders. Journal of Medicinal Chemistry, 2020, 63, 9181-9196.	6.4	5