
Helen E Raybould

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5985234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Introduction to special issue on feeding peptides. Peptides, 2022, 147, 170687.	1.2	Ο
2	Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet. International Journal of Obesity, 2021, 45, 348-357.	1.6	12
3	Region-Specific Cell Membrane N-Glycome of Functional Mouse Brain Areas Revealed by nanoLC-MS Analysis. Molecular and Cellular Proteomics, 2021, 20, 100130.	2.5	19
4	Microbial metabolites and the vagal afferent pathway in the control of food intake. Physiology and Behavior, 2021, 240, 113555.	1.0	7
5	Human milk oligosaccharide 2′-fucosyllactose supplementation improves gut barrier function and signaling in the vagal afferent pathway in mice. Food and Function, 2021, 12, 8507-8521.	2.1	11
6	<i>Bifidobacterium</i> catabolism of human milk oligosaccharides overrides endogenous competitive exclusion driving colonization and protection. Gut Microbes, 2021, 13, 1986666.	4.3	18
7	Estrogen and gut satiety hormones in vagus-hindbrain axis. Peptides, 2020, 133, 170389.	1.2	7
8	Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiology, 2020, 20, 357.	1.3	117
9	Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation. Science Translational Medicine, 2020, 12, .	5.8	29
10	What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice: Summary from a Pennington Scientific Symposium. Obesity, 2020, 28, 1386-1396.	1.5	12
11	Sex differences in response to short-term high fat diet in mice. Physiology and Behavior, 2020, 221, 112894.	1.0	42
12	2′-Fucosyllactose Supplementation Improves Gut-Brain Signaling and Diet-Induced Obese Phenotype and Changes the Gut Microbiota in High Fat-Fed Mice. Nutrients, 2020, 12, 1003.	1.7	22
13	Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain. Cell Reports, 2020, 30, 2028-2039.e4.	2.9	23
14	Multiâ€omics Studies Reveal Altered Hippocampal Nâ€Glycosylation in High Fat Dietâ€Induced Obese Mice. FASEB Journal, 2020, 34, 1-1.	0.2	1
15	Chronic refined low-fat diet consumption reduces cholecystokinin satiation in rats. European Journal of Nutrition, 2019, 58, 2497-2510.	1.8	7
16	Deletion of leptin receptors in vagal afferent neurons disrupts estrogen signaling, body weight, food intake and hormonal controls of feeding in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E568-E577.	1.8	12
17	Lysozyme-rich milk mitigates effects of malnutrition in a pig model of malnutrition and infection. British Journal of Nutrition, 2018, 120, 1131-1148.	1.2	9
18	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	3.0	3

Helen E Raybould

#	Article	IF	CITATIONS
19	System Metaglycomes: Mapping Dynamic Cell Surface Nâ€glycome, Oâ€glycome and Glycolipidome by Mass Spectrometry. FASEB Journal, 2018, 32, 673.11.	0.2	1
20	Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. Journal of Dairy Science, 2017, 100, 2471-2481.	1.4	64
21	Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats. PLoS ONE, 2017, 12, e0171672.	1.1	28
22	Milk with and without lactoferrin can influence intestinal damage in a pig model of malnutrition. Food and Function, 2016, 7, 665-678.	2.1	34
23	Mutations in Durum Wheat <i>SBEII</i> Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats. Crop Science, 2015, 55, 2813-2825.	0.8	35
24	Glucagon-Like Peptide 1 Interacts with Ghrelin and Leptin to Regulate Glucose Metabolism and Food Intake through Vagal Afferent Neuron Signaling ,. Journal of Nutrition, 2015, 145, 672-680.	1.3	82
25	Chronic exposure to Low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiology and Behavior, 2015, 139, 188-194.	1.0	99
26	Vagal plasticity the key to obesity. Molecular Metabolism, 2014, 3, 855-856.	3.0	12
27	Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Molecular Metabolism, 2014, 3, 595-607.	3.0	102
28	Ability of GLP-1 to decrease food intake is dependent on nutritional status. Physiology and Behavior, 2014, 135, 222-229.	1.0	32
29	Influence of Sucrose Ingestion on Brainstem and Hypothalamic Intrinsic Oscillations in Lean and Obese Women. Gastroenterology, 2014, 146, 1212-1221.	0.6	39
30	Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract. PLoS ONE, 2014, 9, e107732.	1.1	53
31	The heat is on: does direct application of capsaicin to autonomic nerves produce a specific deafferentation?. Journal of Physiology, 2013, 591, 1405-1405.	1.3	1
32	Effects of dehydrated Opuntia ficus indica (Nopal) consumption on adiposity and gut physiology in Sprague Dawley rats fed a high fat diet. FASEB Journal, 2013, 27, 861.17.	0.2	0
33	Bifidobacteria Isolated From Infants and Cultured on Human Milk Oligosaccharides Affect Intestinal Epithelial Function. Journal of Pediatric Gastroenterology and Nutrition, 2012, 55, 321-327.	0.9	208
34	Gut microbiota, epithelial function and derangements in obesity. Journal of Physiology, 2012, 590, 441-446.	1.3	92
35	Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiology and Behavior, 2011, 105, 100-105.	1.0	122
36	Cholecystokinin Knockout Mice Are Resistant to High-Fat Diet-Induced Obesity. Gastroenterology, 2010. 138. 1997-2005.	0.6	60

Helen E Raybould

#	Article	IF	CITATIONS
37	Gut chemosensing: Interactions between gut endocrine cells and visceral afferents. Autonomic Neuroscience: Basic and Clinical, 2010, 153, 41-46.	1.4	194
38	The Gâ€protein coupled receptor GPR40 mediates long chain fatty acid induced cholecystokinin secretion. FASEB Journal, 2010, 24, 1015.4.	0.2	2
39	Can diet influence the expression of genes associated with control of appetite?. FASEB Journal, 2008, 22, 1184.2.	0.2	0
40	Gastrointestinal (GI) infusion of bitter tastants supports conditioned flavor avoidance (CFA) and activates central neural Fos expression. FASEB Journal, 2008, 22, 1185.5.	0.2	0
41	Sensing of glucose in the gastrointestinal tract. Autonomic Neuroscience: Basic and Clinical, 2007, 133, 86-90.	1.4	31
42	Mechanisms of CCK signaling from gut to brain. Current Opinion in Pharmacology, 2007, 7, 570-574.	1.7	126
43	The CCK1R is required for enhanced lipid sensing to lipid in mice maintained on high fat diet. FASEB Journal, 2007, 21, A456.	0.2	0
44	Detection of macronutrients in the intestinal wall. Autonomic Neuroscience: Basic and Clinical, 2006, 125, 28-33.	1.4	53
45	Expression of 5-HT ₃ receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. American Journal of Physiology - Renal Physiology, 2003, 284, G367-G372.	1.6	138
46	Primary afferent response to signals in the intestinal lumen. Journal of Physiology, 2001, 530, 343-343.	1.3	11
47	Integrative Responses of the Gastrointestinal Tract and Liver to a Meal. , 0, , 1-14.		1