Helen E Raybould

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5985234/publications.pdf

Version: 2024-02-01

331670 276875 1,972 47 21 41 citations h-index g-index papers 57 57 57 2706 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bifidobacteria Isolated From Infants and Cultured on Human Milk Oligosaccharides Affect Intestinal Epithelial Function. Journal of Pediatric Gastroenterology and Nutrition, 2012, 55, 321-327.	1.8	208
2	Gut chemosensing: Interactions between gut endocrine cells and visceral afferents. Autonomic Neuroscience: Basic and Clinical, 2010, 153, 41-46.	2.8	194
3	Expression of 5-HT ₃ receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. American Journal of Physiology - Renal Physiology, 2003, 284, G367-G372.	3.4	138
4	Mechanisms of CCK signaling from gut to brain. Current Opinion in Pharmacology, 2007, 7, 570-574.	3.5	126
5	Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiology and Behavior, 2011, 105, 100-105.	2.1	122
6	Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiology, 2020, 20, 357.	3.3	117
7	Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Molecular Metabolism, 2014, 3, 595-607.	6.5	102
8	Chronic exposure to Low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiology and Behavior, 2015, 139, 188-194.	2.1	99
9	Gut microbiota, epithelial function and derangements in obesity. Journal of Physiology, 2012, 590, 441-446.	2.9	92
10	Glucagon-Like Peptide 1 Interacts with Ghrelin and Leptin to Regulate Glucose Metabolism and Food Intake through Vagal Afferent Neuron Signaling ,. Journal of Nutrition, 2015, 145, 672-680.	2.9	82
11	Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. Journal of Dairy Science, 2017, 100, 2471-2481.	3.4	64
12	Cholecystokinin Knockout Mice Are Resistant to High-Fat Diet-Induced Obesity. Gastroenterology, 2010, 138, 1997-2005.	1.3	60
13	Detection of macronutrients in the intestinal wall. Autonomic Neuroscience: Basic and Clinical, 2006, 125, 28-33.	2.8	53
14	Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract. PLoS ONE, 2014, 9, e107732.	2.5	53
15	Sex differences in response to short-term high fat diet in mice. Physiology and Behavior, 2020, 221, 112894.	2.1	42
16	Influence of Sucrose Ingestion on Brainstem and Hypothalamic Intrinsic Oscillations in Lean and Obese Women. Gastroenterology, 2014, 146, 1212-1221.	1.3	39
17	Mutations in Durum Wheat <i>SBEII</i> Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats. Crop Science, 2015, 55, 2813-2825.	1.8	35
18	Milk with and without lactoferrin can influence intestinal damage in a pig model of malnutrition. Food and Function, 2016, 7, 665-678.	4.6	34

#	Article	IF	CITATIONS
19	Ability of GLP-1 to decrease food intake is dependent on nutritional status. Physiology and Behavior, 2014, 135, 222-229.	2.1	32
20	Sensing of glucose in the gastrointestinal tract. Autonomic Neuroscience: Basic and Clinical, 2007, 133, 86-90.	2.8	31
21	Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation. Science Translational Medicine, 2020, 12, .	12.4	29
22	Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats. PLoS ONE, 2017, 12, e0171672.	2.5	28
23	Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain. Cell Reports, 2020, 30, 2028-2039.e4.	6.4	23
24	2′-Fucosyllactose Supplementation Improves Gut-Brain Signaling and Diet-Induced Obese Phenotype and Changes the Gut Microbiota in High Fat-Fed Mice. Nutrients, 2020, 12, 1003.	4.1	22
25	Region-Specific Cell Membrane N-Glycome of Functional Mouse Brain Areas Revealed by nanoLC-MS Analysis. Molecular and Cellular Proteomics, 2021, 20, 100130.	3.8	19
26	<i>Bifidobacterium</i> catabolism of human milk oligosaccharides overrides endogenous competitive exclusion driving colonization and protection. Gut Microbes, 2021, 13, 1986666.	9.8	18
27	Vagal plasticity the key to obesity. Molecular Metabolism, 2014, 3, 855-856.	6.5	12
28	Deletion of leptin receptors in vagal afferent neurons disrupts estrogen signaling, body weight, food intake and hormonal controls of feeding in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E568-E577.	3 . 5	12
29	What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice: Summary from a Pennington Scientific Symposium. Obesity, 2020, 28, 1386-1396.	3.0	12
30	Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet. International Journal of Obesity, 2021, 45, 348-357.	3.4	12
31	Primary afferent response to signals in the intestinal lumen. Journal of Physiology, 2001, 530, 343-343.	2.9	11
32	Human milk oligosaccharide 2′-fucosyllactose supplementation improves gut barrier function and signaling in the vagal afferent pathway in mice. Food and Function, 2021, 12, 8507-8521.	4.6	11
33	Lysozyme-rich milk mitigates effects of malnutrition in a pig model of malnutrition and infection. British Journal of Nutrition, 2018, 120, 1131-1148.	2.3	9
34	Chronic refined low-fat diet consumption reduces cholecystokinin satiation in rats. European Journal of Nutrition, 2019, 58, 2497-2510.	3.9	7
35	Estrogen and gut satiety hormones in vagus-hindbrain axis. Peptides, 2020, 133, 170389.	2.4	7
36	Microbial metabolites and the vagal afferent pathway in the control of food intake. Physiology and Behavior, 2021, 240, 113555.	2.1	7

3

#	Article	lF	CITATIONS
37	New horizons for future research $\hat{a}\in$ Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	6.5	3
38	The Gâ€protein coupled receptor GPR40 mediates long chain fatty acid induced cholecystokinin secretion. FASEB Journal, 2010, 24, 1015.4.	0.5	2
39	Integrative Responses of the Gastrointestinal Tract and Liver to a Meal. , 0, , 1-14.		1
40	The heat is on: does direct application of capsaicin to autonomic nerves produce a specific deafferentation?. Journal of Physiology, 2013, 591, 1405-1405.	2.9	1
41	System Metaglycomes: Mapping Dynamic Cell Surface Nâ€glycome, Oâ€glycome and Glycolipidome by Mass Spectrometry. FASEB Journal, 2018, 32, 673.11.	0.5	1
42	Multiâ€omics Studies Reveal Altered Hippocampal Nâ€Clycosylation in High Fat Dietâ€Induced Obese Mice. FASEB Journal, 2020, 34, 1-1.	0.5	1
43	The CCK1R is required for enhanced lipid sensing to lipid in mice maintained on high fat diet. FASEB Journal, 2007, 21, A456.	0.5	O
44	Can diet influence the expression of genes associated with control of appetite? FASEB Journal, 2008, 22, 1184.2.	0.5	0
45	Gastrointestinal (GI) infusion of bitter tastants supports conditioned flavor avoidance (CFA) and activates central neural Fos expression. FASEB Journal, 2008, 22, 1185.5.	0.5	O
46	Effects of dehydrated Opuntia ficus indica (Nopal) consumption on adiposity and gut physiology in Sprague Dawley rats fed a high fat diet. FASEB Journal, 2013, 27, 861.17.	0.5	0
47	Introduction to special issue on feeding peptides. Peptides, 2022, 147, 170687.	2.4	O