Ian R Kelsall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5985152/publications.pdf

Version: 2024-02-01

		687220	940416
16	1,158	13	16
papers	citations	h-index	g-index
18	18	18	2099
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	HOILâ€1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. EMBO Journal, 2022, 41, e109700.	3.5	51
2	HOIL-1, an atypical E3 ligase that controls MyD88 signalling by forming ester bonds between ubiquitin and components of the Myddosome. Advances in Biological Regulation, 2020, 75, 100666.	1.4	14
3	Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling. Journal of Biological Chemistry, 2019, 294, 2651-5314.	1.6	13
4	The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13293-13298.	3.3	102
5	IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nature Communications, 2017, 8, 14392.	5.8	251
6	Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3481-E3489.	3.3	88
7	Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase. Nature Chemical Biology, 2017, 13, 850-857.	3.9	80
8	Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation. Cell, 2016, 166, 1198-1214.e24.	13.5	172
9	Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochemical and Biophysical Research Communications, 2016, 474, 452-461.	1.0	77
10	TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO Journal, 2013, 32, 2848-2860.	3.5	84
11	The Fanconi Anaemia Components UBE2T and FANCM Are Functionally Linked to Nucleotide Excision Repair. PLoS ONE, 2012, 7, e36970.	1.1	38
12	R3F, a novel membraneâ€associated glycogen targeting subunit of protein phosphatase 1 regulates glycogen synthase in astrocytoma cells in response to glucose and extracellular signals. Journal of Neurochemistry, 2011, 118, 596-610.	2.1	17
13	Ppm1E is an in cellulo AMP-activated protein kinase phosphatase. Cellular Signalling, 2011, 23, 114-124.	1.7	98
14	Disruption of the allosteric phosphorylase a regulation of the hepatic glycogen-targeted protein phosphatase 1 improves glucose tolerance in vivo. Cellular Signalling, 2009, 21, 1123-1134.	1.7	34
15	Disruption of the striated muscle glycogen-targeting subunit of protein phosphatase 1: influence of the genetic background. Journal of Molecular Endocrinology, 2008, 40, 47-59.	1.1	7
16	The hepatic PP1 glycogenâ€ŧargeting subunit interaction with phosphorylase <i>a</i> can be blocked by Câ€ŧerminal tyrosine deletion or an indole drug. FEBS Letters, 2007, 581, 4749-4753.	1.3	26