Chun-Mei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5984931/publications.pdf

Version: 2024-02-01

236925 276875 1,844 62 25 41 citations h-index g-index papers 63 63 63 2075 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Structural features and antioxidant activity of tannin from persimmon pulp. Food Research International, 2008, 41, 208-217.	6.2	189
2	High Molecular Weight Persimmon (Diospyros kaki L.) Proanthocyanidin: A Highly Galloylated, A-Linked Tannin with an Unusual Flavonol Terminal Unit, Myricetin. Journal of Agricultural and Food Chemistry, 2010, 58, 9033-9042.	5.2	138
3	Comparison of the Efficiency of Five Different Drying Carriers on the Spray Drying of Persimmon Pulp Powders. Drying Technology, 2014, 32, 1157-1166.	3.1	103
4	Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. Journal of Agricultural and Food Chemistry, 2018, 66, 1629-1637.	5. 2	80
5	High molecular weight persimmon tannin is a potent antioxidant both ex vivo and in vivo. Food Research International, 2012, 45, 26-30.	6.2	64
6	Preparation of A-type proanthocyanidin dimers from peanut skins and persimmon pulp and comparison of the antioxidant activity of A-type and B-type dimers. Fìtoterapìâ, 2013, 91, 128-139.	2.2	56
7	Tannins inhibit SARSâ€CoVâ€2 through binding with catalytic dyad residues of 3CL ^{pro} : An in silico approach with 19 structural different hydrolysable tannins. Journal of Food Biochemistry, 2020, 44, e13432.	2.9	56
8	Interactions between highly galloylated persimmon tannins and pectins. International Journal of Biological Macromolecules, 2018, 106, 410-417.	7.5	55
9	Real-Time Light Scattering Tracking of Gold Nanoparticles- bioconjugated Respiratory Syncytial Virus Infecting HEp-2 Cells. Scientific Reports, 2014, 4, 4529.	3.3	54
10	High molecular weight persimmon tannin is a potent hypolipidemic in high-cholesterol diet fed rats. Food Research International, 2012, 48, 970-977.	6.2	51
11	Persimmon Tannin accounts for hypolipidemic effects of persimmon through activating of AMPK and suppressing NF-κB activation and inflammatory responses in High-Fat Diet Rats. Food and Function, 2014, 5, 1536-1546.	4.6	47
12	Mulberry anthocyanins exert anti-AGEs effects by selectively trapping glyoxal and structural-dependently blocking the lysyl residues of \hat{l}^2 -lactoglobulins. Bioorganic Chemistry, 2020, 96, 103615.	4.1	42
13	Inhibitory Effect of Persimmon Tannin on Pancreatic Lipase and the Underlying Mechanism in Vitro. Journal of Agricultural and Food Chemistry, 2018, 66, 6013-6021.	5.2	41
14	Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor- \hat{l}^3 in the early phase of adipogenesis. European Journal of Nutrition, 2015, 54, 1333-1343.	3.9	38
15	A-type ECG and EGCG dimers disturb the structure of 3T3-L1 cell membrane and strongly inhibit its differentiation by targeting peroxisome proliferator-activated receptor \hat{I}^3 with miR-27 involved mechanism. Journal of Nutritional Biochemistry, 2015, 26, 1124-1135.	4.2	37
16	Effect of persimmon tannin on the physicochemical properties of maize starch with different amylose/amylopectin ratios. International Journal of Biological Macromolecules, 2019, 132, 1193-1199.	7.5	36
17	A-type dimeric epigallocatechin-3-gallate (EGCG) is a more potent inhibitor against the formation of insulin amyloid fibril than EGCG monomer. Biochimie, 2016, 125, 204-212.	2.6	35
18	Persimmon tannin changes the properties and the morphology of wheat gluten by altering the cross-linking, and the secondary structure in a dose-dependent manner. Food Research International, 2020, 137, 109536.	6.2	35

#	Article	IF	CITATIONS
19	Comparison of the degradation kinetics of A-type and B-type proanthocyanidins dimers as a function of pH and temperature. European Food Research and Technology, 2015, 240, 707-717.	3.3	33
20	Anti-glycation and anti-hardening effects of microencapsulated mulberry polyphenols in high-protein-sugar ball models through binding with some glycation sites of whey proteins. International Journal of Biological Macromolecules, 2019, 123, 10-19.	7.5	33
21	Preparation of an Acid Butanol Standard from Fresh Apples. Journal of Chemical Ecology, 2010, 36, 453-460.	1.8	32
22	Reshaped fecal gut microbiota composition by the intake of high molecular weight persimmon tannin in normal and high-cholesterol diet-fed rats. Food and Function, 2018, 9, 541-551.	4.6	31
23	Metabolites and Changes in Antioxidant Activity of A-Type and B-Type Proanthocyanidin Dimers after Incubation with Rat Intestinal Microbiota. Journal of Agricultural and Food Chemistry, 2015, 63, 8991-8998.	5.2	29
24	Penta-O-galloyl- \hat{l}^2 -d-glucose, a hydrolysable tannin from Radix Paeoniae Alba, inhibits adipogenesis and TNF- \hat{l} ±-mediated inflammation in 3T3-L1 cells. Chemico-Biological Interactions, 2019, 302, 156-163.	4.0	27
25	Preparation and thermal stability of collagen from scales of grass carp (Ctenopharyngodon idellus). European Food Research and Technology, 2008, 227, 1467-1473.	3.3	25
26	Position and orientation of gallated proanthocyanidins in lipid bilayer membranes: influence of polymerization degree and linkage type. Journal of Biomolecular Structure and Dynamics, 2018, 36, 2862-2875.	3.5	24
27	Structure-Dependent Membrane-Perturbing Potency of Four Proanthocyanidin Dimers on 3T3-L1 Preadipocytes. Journal of Agricultural and Food Chemistry, 2016, 64, 7022-7032.	5.2	23
28	Comparison of sensory and compositions of five selected persimmon cultivars (Diospyros kaki L.) and correlations between chemical components and processing characteristics. Journal of Food Science and Technology, 2016, 53, 1597-1607.	2.8	23
29	Persimmon tannin regulates the expression of genes critical for cholesterol absorption and cholesterol efflux by LXRα independent pathway. Journal of Functional Foods, 2016, 23, 283-293.	3.4	22
30	A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts. Journal of Nutritional Biochemistry, 2017, 48, 62-73.	4.2	22
31	Emulsification mechanism of persimmon pectin with promising emulsification capability and stability. Food Hydrocolloids, 2022, 131, 107727.	10.7	22
32	Comparison of disaggregative effect of A-type EGCG dimer and EGCG monomer on the preformed bovine insulin amyloid fibrils. Biophysical Chemistry, 2017, 230, 1-9.	2.8	21
33	Confirmation and understanding the potential emulsifying characterization of persimmon pectin: From structural to diverse rheological aspects. Food Hydrocolloids, 2022, 131, 107738.	10.7	21
34	Preparation and properties of potato amylose-based fat replacer using super-heated quenching. Carbohydrate Polymers, 2019, 223, 115020.	10.2	20
35	Aroma components at various stages of litchi juice processing. Journal of the Science of Food and Agriculture, 2009, 89, 2405-2414.	3.5	18
36	Persimmon tannin alleviates hepatic steatosis in LO2 cells by targeting miR-122 and miR-33b and its effects closely associated with the A type ECG dimer and EGCG dimer structural units. Journal of Functional Foods, 2014, 11, 330-341.	3.4	18

#	Article	IF	Citations
37	Comparison of the nutritional as well as the volatile composition of in-season and off-season Hezuo 903 tomato at red stage. European Food Research and Technology, 2017, 243, 203-214.	3.3	18
38	Interaction of characteristic structural elements of persimmon tannin with Chinese cobra PLA2. Toxicon, 2013, 74, 34-43.	1.6	16
39	Development of suitable standards for quantitative determination of persimmon phenol contents in Folin-Ciocalteu and vanillin assays. European Food Research and Technology, 2014, 239, 385-391.	3.3	16
40	Molecular Insight into Affinities of Gallated and Nongallated Proanthocyanidins Dimers to Lipid Bilayers. Scientific Reports, 2016, 6, 37680.	3.3	14
41	AuNPs/graphene Hybrids-Based Enzyme-Free Plasmonic Immunoassay for Respiratory Syncytial Virus Detection. Journal of Analysis and Testing, 2021, 5, 203-209.	5.1	14
42	The interaction of a polymeric persimmon proanthocyanidin fraction with Chinese cobra PLA2 and BSA. Toxicon, 2013, 67, 71-79.	1.6	13
43	Understanding toward the Biophysical Interaction of Polymeric Proanthocyanidins (Persimmon) Tj ETQq1 1 0.784 Food Chemistry, 2019, 67, 11044-11052.	4314 rgBT 5.2	/Overlock 1 13
44	PCC0208009, an indirect IDO1 inhibitor, alleviates neuropathic pain and co-morbidities by regulating synaptic plasticity of ACC and amygdala. Biochemical Pharmacology, 2020, 177, 113926.	4.4	12
45	Spectroscopic investigations on the binding of persimmon tannin to phospholipase A2 from Chinese cobra (Naja naja atra). Journal of Molecular Structure, 2012, 1008, 42-48.	3.6	11
46	Galloyl Group in B-type Proanthocyanidin Dimers Was Responsible for Its Differential Inhibitory Activity on 3T3-L1 Preadipocytes due to the Strong Lipid Raft-Perturbing Potency. Journal of Agricultural and Food Chemistry, 2021, 69, 5216-5225.	5.2	11
47	Both non-covalent and covalent interactions were involved in the mechanism of detoxifying effects of persimmon tannin on Chinese cobra PLA 2. $F\tilde{A}$ -toterap \tilde{A} - \tilde{A} ¢, 2017, 120, 41-51.	2.2	10
48	Ultrasonic-assisted extraction of zeaxanthin from Lycium barbarum L. with composite solvent containing ionic liquid: Experimental and theoretical research. Journal of Molecular Liquids, 2022, 347, 118265.	4.9	10
49	Lipid rafts as potential mechanistic targets underlying the pleiotropic actions of polyphenols. Critical Reviews in Food Science and Nutrition, 2020, , 1-14.	10.3	9
50	Multiple coâ€pigments of quercetin and chlorogenic acid blends intensify the color of mulberry anthocyanins: insights from hyperchromicity, kinetics, and molecular modeling investigations. Journal of the Science of Food and Agriculture, 2021, 101, 1579-1588.	3.5	9
51	The detoxifying effects of structural elements ofÂpersimmon tannin on Chinese cobra phospholipase A 2 correlated with their structural disturbing effects well. Journal of Food and Drug Analysis, 2017, 25, 731-740.	1.9	8
52	Simultaneous determination of the pharmacokinetics of A-type EGCG and ECG dimers in mice plasma and its metabolites by UPLC-QTOF-MS. International Journal of Food Sciences and Nutrition, 2020, 71, 211-220.	2.8	8
53	Effects of anthocyanins on β-lactoglobulin glycoxidation: a study of mechanisms and structure–activity relationship. Food and Function, 2021, 12, 10550-10562.	4.6	8
54	Jujube peel polyphenols synergistically inhibit lipopolysaccharide-induced inflammation through multiple signaling pathways in RAW 264.7Âcells. Food and Chemical Toxicology, 2022, 164, 113062.	3.6	8

#	Article	IF	CITATION
55	Persimmon highly galloylatedâ€tannins in vitro mitigated αâ€nmylase and αâ€glucosidase via statically binding with their catalyticâ€closed sides and altering their secondary structure elements. Journal of Food Biochemistry, 2020, 44, e13234.	2.9	7
56	Persimmon Oligomeric Proanthocyanidins Exert Antibacterial Activity through Damaging the Cell Membrane and Disrupting the Energy Metabolism of <i>Staphylococcus aureus</i> ACS Food Science & Technology, 2021, 1, 35-44.	2.7	6
57	Comparison of the carotenoid compositions and protection of in-season and anti-season tomato extracts against <scp>d</scp> -galactose-induced cognition deficits and oxidative damage in mice. International Journal of Food Sciences and Nutrition, 2016, 67, 983-994.	2.8	5
58	Targeting Lipid Rafts as a Rapid Screening Strategy for Potential Antiadipogenic Polyphenols along with the Structure–Activity Relationship and Mechanism Elucidation. Journal of Agricultural and Food Chemistry, 2022, 70, 3872-3885.	5.2	4
59	Persimmon tannin unevenly changes the physical properties, morphology, subunits composition and cross-linking types of gliadin and glutenin. Food Chemistry, 2022, 387, 132913.	8.2	4
60	Formation and characterization of starch-based spherulite: Effect of molecular weight of potato amylose starch. Food Chemistry, 2022, 371, 131060.	8.2	3
61	The galloyl moiety enhances inhibitory activity of polyphenols against adipogenic differentiation in 3T3-L1 preadipocytes. Food and Function, 2022, 13, 5275-5286.	4.6	3
62	Inhibitory Effects against Alpha-Amylase of an Enriched Polyphenol Extract from Pericarp of Mangosteen (Garcinia mangostana). Foods, 2022, 11, 1001.	4.3	3