
Vanesa Esteban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5984681/publications.pdf Version: 2024-02-01

VANESA ESTERAN

#	Article	IF	CITATIONS
1	Personalized diagnostic approach and indirect quantification of extravasation in human anaphylaxis. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 202-213.	2.7	4
2	CCN2 (Cellular Communication Network Factor 2) Deletion Alters Vascular Integrity and Function Predisposing to Aneurysm Formation. Hypertension, 2022, 79, e42-e55.	1.3	9
3	NLRP3 priming due to skin damage precedes LTP allergic sensitization in a mouse model. Scientific Reports, 2022, 12, 3329.	1.6	8
4	Pathophysiological, Cellular, and Molecular Events of the Vascular System in Anaphylaxis. Frontiers in Immunology, 2022, 13, 836222.	2.2	14
5	Characterization of Mast Cells from Healthy and Varicose Human Saphenous Vein. Biomedicines, 2022, 10, 1062.	1.4	1
6	The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3249-3266.	2.7	16
7	Proteomic profile of extracellular vesicles in anaphylaxis and their role in vascular permeability. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2276-2279.	2.7	9
8	In Vitro Investigation of Vascular Permeability in Endothelial Cells from Human Artery, Vein and Lung Microvessels at Steady-State and Anaphylactic Conditions. Biomedicines, 2021, 9, 439.	1.4	7
9	Increased miRâ€21â€3p and miRâ€487bâ€3p serum levels during anaphylactic reaction in food allergic children. Pediatric Allergy and Immunology, 2021, 32, 1296-1306.	1.1	14
10	LTP Allergy Follow-Up Study: Development of Allergy to New Plant Foods 10 Years Later. Nutrients, 2021, 13, 2165.	1.7	11
11	Proteomic and Biological Analysis of an In Vitro Human Endothelial System in Response to Drug Anaphylaxis. Frontiers in Immunology, 2021, 12, 692569.	2.2	6
12	Early renal and vascular damage within the normoalbuminuria condition. Journal of Hypertension, 2021, 39, 2220-2231.	0.3	7
13	Characterization of anaphylaxis reveals different metabolic changes depending on severity and triggers. Clinical and Experimental Allergy, 2021, 51, 1295-1309.	1.4	10
14	Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting. Antioxidants, 2021, 10, 1369.	2.2	1
15	The TNF-like weak inducer of the apoptosis/fibroblast growth factor–inducible molecule 14 axis mediates histamine and platelet-activating factor–induced subcutaneous vascular leakage and anaphylactic shock. Journal of Allergy and Clinical Immunology, 2020, 145, 583-596.e6.	1.5	19
16	Group 1 allergens, transported by mold spores, induce asthma exacerbation in a mouse model. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2388-2391.	2.7	7
17	A major role of TWEAK/Fn14 axis as a therapeutic target for post-angioplasty restenosis. EBioMedicine, 2019, 46, 274-289.	2.7	21
18	Interaction of Alt a 1 with SLC22A17 in the airway mucosa. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2167-2180.	2.7	10

VANESA ESTEBAN

#	Article	IF	CITATIONS
19	Defective p27 phosphorylation at serine 10 affects vascular reactivity and increases abdominal aortic aneurysm development via Cox-2 activation. Journal of Molecular and Cellular Cardiology, 2018, 116, 5-15.	0.9	6
20	Regulator of calcineurin 1 modulates vascular contractility and stiffness through the upregulation of COX-2-derived prostanoids. Pharmacological Research, 2018, 133, 236-249.	3.1	12
21	TWEAK or FN14 insufficiency inhibits neointimal hyperplasia through reduction of CYCLIN/CDKS expression and impaired vascular smooth muscle cells proliferation. Atherosclerosis, 2018, 275, e46.	0.4	0
22	Branched hain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. Journal of Cellular and Molecular Medicine, 2018, 22, 4948-4962.	1.6	89
23	Editorial: New Insights In Anaphylaxis. Frontiers in Immunology, 2018, 9, 506.	2.2	1
24	Mechanisms underlying induction of allergic sensitization by Pru p 3. Clinical and Experimental Allergy, 2017, 47, 1398-1408.	1.4	38
25	Nut Allergy in Two Different Areas of Spain: Differences in Clinical and Molecular Pattern. Nutrients, 2017, 9, 909.	1.7	16
26	Beyond IgE—When Do IgE-Crosslinking and Effector Cell Activation Lead to Clinical Anaphylaxis?. Frontiers in Immunology, 2017, 8, 871.	2.2	10
27	Endothelial Regulator of Calcineurin 1 Promotes Barrier Integrity and Modulates Histamine-Induced Barrier Dysfunction in Anaphylaxis. Frontiers in Immunology, 2017, 8, 1323.	2.2	22
28	Detection of major food allergens in amniotic fluid: initial allergenic encounter during pregnancy. Pediatric Allergy and Immunology, 2016, 27, 716-720.	1.1	31
29	Nonlinear Optical 3-Dimensional Method for Quantifying Atherosclerosis Burden. Circulation: Cardiovascular Imaging, 2014, 7, 566-569.	1.3	5
30	Inactivation of Nuclear Factor-Y Inhibits Vascular Smooth Muscle Cell Proliferation and Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1036-1045.	1.1	12
31	A major role for <scp>RCAN</scp> 1 in atherosclerosis progression. EMBO Molecular Medicine, 2013, 5, 1901-1917.	3.3	35
32	Reciprocal Relationship Between Reactive Oxygen Species and Cyclooxygenase-2 and Vascular Dysfunction in Hypertension. Antioxidants and Redox Signaling, 2013, 18, 51-65.	2.5	127
33	Regulator of calcineurin 1 mediates pathological vascular wall remodeling. Journal of Experimental Medicine, 2011, 208, 2125-2139.	4.2	59
34	Regulator of calcineurin 1 mediates pathological vascular wall remodeling. Journal of Cell Biology, 2011, 195, i1-i1.	2.3	0
35	Angiotensin-(1–7) and the G Protein-Coupled Receptor Mas Are Key Players in Renal Inflammation. PLoS ONE, 2009, 4, e5406.	1.1	117
36	Inhibitory effect of interleukin-1β on angiotensin II-induced connective tissue growth factor and type IV collagen production in cultured mesangial cells. American Journal of Physiology - Renal Physiology, 2008, 294, F149-F160.	1.3	47

VANESA ESTEBAN

#	Article	IF	CITATIONS
37	Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney International, 2008, 74, 585-595.	2.6	110
38	Parathyroid hormone-related protein promotes inflammation in the kidney with an obstructed ureter. Kidney International, 2008, 73, 835-847.	2.6	25
39	HMC-CoA Reductase Inhibitors Decrease Angiotensin II–Induced Vascular Fibrosis. Hypertension, 2007, 50, 377-383.	1.3	97
40	The Regulation of the Inflammatory Response Through Nuclear Factor-κB Pathway by Angiotensin IV Extends the Role of the Renin Angiotensin System in Cardiovascular Diseases. Trends in Cardiovascular Medicine, 2007, 17, 19-25.	2.3	69
41	Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrology Dialysis Transplantation, 2006, 21, 16-20.	0.4	291
42	Renal and vascular hypertension-induced inflammation: role of angiotensin II. Current Opinion in Nephrology and Hypertension, 2006, 15, 159-166.	1.0	132
43	Role of Parathyroid Hormone–Related Protein in Tubulointerstitial Apoptosis and Fibrosis after Folic Acid–Induced Nephrotoxicity. Journal of the American Society of Nephrology: JASN, 2006, 17, 1594-1603.	3.0	62
44	Proteomic Analysis of Early Left Ventricular Hypertrophy Secondary to Hypertension: Modulation by Antihypertensive Therapies. Journal of the American Society of Nephrology: JASN, 2006, 17, S159-S164.	3.0	24
45	Long-term treatment with an ACE inhibitor or an AT1 antagonist avoids hypertension-induced inflammation in the kidney. Journal of Nephrology, 2006, 19, 725-31.	0.9	3
46	The Rho-kinase pathway regulates angiotensin II-induced renal damage. Kidney International, 2005, 68, S39-S45.	2.6	47
47	Long-Term Blood Pressure Control Prevents Oxidative Renal Injury. Antioxidants and Redox Signaling, 2005, 7, 1285-1293.	2.5	29
48	Angiotensin II Regulates Vascular Endothelial Growth Factor via Hypoxia-Inducible Factor-1α Induction and Redox Mechanisms in the Kidney. Antioxidants and Redox Signaling, 2005, 7, 1275-1284.	2.5	50
49	Endothelin-1, via ETAReceptor and Independently of Transforming Growth Factor-β, Increases the Connective Tissue Growth Factor in Vascular Smooth Muscle Cells. Circulation Research, 2005, 97, 125-134.	2.0	108
50	Angiotensin II Activates the Smad Pathway in Vascular Smooth Muscle Cells by a Transforming Growth Factor-β–Independent Mechanism. Circulation, 2005, 111, 2509-2517.	1.6	303
51	Angiotensin IV Activates the Nuclear Transcription Factor-ήB and Related Proinflammatory Genes in Vascular Smooth Muscle Cells. Circulation Research, 2005, 96, 965-973.	2.0	97
52	Angiotensin II, via AT1 and AT2 Receptors and NF-ÂB Pathway, Regulates the Inflammatory Response in Unilateral Ureteral Obstruction. Journal of the American Society of Nephrology: JASN, 2004, 15, 1514-1529.	3.0	218
53	Molecular mechanisms of angiotensin Il-induced vascular injury. Current Hypertension Reports, 2003, 5, 73-79.	1.5	144
54	Renal expression of angiotensin type 2 (AT2) receptors during kidney damage. Kidney International, 2003. 64. S21-S26.	2.6	72

Vanesa Esteban

#	Article	IF	CITATIONS
55	Effect of simultaneous blockade of AT1 and AT2 receptors on the NFκB pathway and renal inflammatory response. Kidney International, 2003, 64, S33-S38.	2.6	59
56	Angiotensin II Increases Connective Tissue Growth Factor in the Kidney. American Journal of Pathology, 2003, 163, 1937-1947.	1.9	96
57	Inflammation and angiotensin II. International Journal of Biochemistry and Cell Biology, 2003, 35, 881-900.	1.2	603
58	Connective Tissue Growth Factor Is a Mediator of Angiotensin II–Induced Fibrosis. Circulation, 2003, 108, 1499-1505.	1.6	248
59	Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney International, 2002, 62, S12-S22.	2.6	338
60	Angiotensin III Activates Nuclear Transcription Factor-κB in Cultured Mesangial Cells Mainly via AT2 Receptors. Journal of the American Society of Nephrology: JASN, 2002, 13, 1162-1171.	3.0	34
61	Role of the Renin-Angiotensin System in Vascular Diseases. Hypertension, 2001, 38, 1382-1387.	1.3	268
62	Mast Cell Desensitization in Allergen Immunotherapy. Frontiers in Allergy, 0, 3, .	1.2	5
63	Alt a 1 Promotes Allergic Asthma In Vivo Through TLR4-Alveolar Macrophages. Frontiers in Immunology, 0, 13, .	2.2	0