Hsin-Yi Tseng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5984263/publications.pdf

Version: 2024-02-01

23 803 16 23 papers citations h-index g-index

24 24 24 1720 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Repurposing Melanoma Chemotherapy to Activate Inflammasomes in the Treatment of BRAF/MAPK Inhibitor Resistant Melanoma. Journal of Investigative Dermatology, 2022, 142, 1444-1455.e10.	0.7	11
2	Nicotinamide Inhibits T Cell Exhaustion and Increases Differentiation of CD8 Effector T Cells. Cancers, 2022, 14, 323.	3.7	6
3	A Combination of Epigenetic BET and CDK9 Inhibitors for Treatment of Human Melanoma. Journal of Investigative Dermatology, 2021, 141, 2238-2249.e12.	0.7	7
4	Pretreatment Innate Cell Populations and CD4 T Cells in Blood Are Associated With Response to Immune Checkpoint Blockade in Melanoma Patients. Frontiers in Immunology, 2020, 11, 372.	4.8	20
5	Do innate killing mechanisms activated by inflammasomes have a role in treating melanoma?. Pigment Cell and Melanoma Research, 2020, 33, 660-670.	3.3	14
6	Coâ€targeting bromodomain and extraâ€terminal proteins and MCL1 induces synergistic cell death in melanoma. International Journal of Cancer, 2020, 147, 2176-2189.	5.1	16
7	BRAF/MEK inhibitors promote CD47 expression that is reversible by ERK inhibition in melanoma. Oncotarget, 2017, 8, 69477-69492.	1.8	28
8	TLR2, TLR4 AND MyD88 Mediate Allergic Airway Disease (AAD) and Streptococcus pneumoniae-Induced Suppression of AAD. PLoS ONE, 2016, 11, e0156402.	2.5	26
9	EZH2 as a mediator of treatment resistance in melanoma. Pigment Cell and Melanoma Research, 2016, 29, 500-507.	3.3	37
10	RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy, 2015, 11, 975-994.	9.1	63
11	RIP1 Kinase Is an Oncogenic Driver in Melanoma. Cancer Research, 2015, 75, 1736-1748.	0.9	63
12	Involvement of vacuolar H ⁺ â€ <scp>ATP</scp> ase in killing of human melanoma cells by the sphingosine kinase analogue <scp>FTY</scp> 720. Pigment Cell and Melanoma Research, 2015, 28, 171-183.	3.3	19
13	INPP4B is upregulated and functions as an oncogenic driver through SGK3 in a subset of melanomas. Oncotarget, 2015, 6, 39891-39907.	1.8	40
14	Oncogenic Activation of MEK/ERK Primes Melanoma Cells for Adaptation to Endoplasmic Reticulum Stress. Journal of Investigative Dermatology, 2014, 134, 488-497.	0.7	66
15	Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cellular Signalling, 2014, 26, 287-294.	3.6	80
16	Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells. Oncotarget, 2014, 5, 11237-11251.	1.8	34
17	Adipocytes Contribute to Resistance of Human Melanoma Cells to Chemotherapy and Targeted Therapy. Current Medicinal Chemistry, 2014, 21, 1255-1267.	2.4	34
18	Loss of PI(4,5)P2 5-Phosphatase A Contributes to Resistance of Human Melanoma Cells to RAF/MEK Inhibitors. Translational Oncology, 2013, 6, 470-IN15.	3.7	7

HSIN-YI TSENG

#	Article	IF	CITATION
19	PI(4,5)P2 5-phosphatase A regulates PI3K/Akt signalling and has a tumour suppressive role in human melanoma. Nature Communications, 2013, 4, 1508.	12.8	67
20	Autophagy-mediated HMGB1 release antagonizes apoptosis of gastric cancer cells induced by vincristine via transcriptional regulation of Mcl-1. Autophagy, 2012, 8, 109-121.	9.1	55
21	The melanoma-associated antigen MAGE-D2 suppresses TRAIL receptor 2 and protects against TRAIL-induced apoptosis in human melanoma cells. Carcinogenesis, 2012, 33, 1871-1881.	2.8	26
22	Contrasting Effects of Nutlin-3 on TRAIL- and Docetaxel-Induced Apoptosis Due to Upregulation of TRAIL-R2 and Mcl-1 in Human Melanoma Cells. Molecular Cancer Therapeutics, 2010, 9, 3363-3374.	4.1	30
23	2-Deoxy-D-glucose enhances TRAIL-induced apoptosis in human melanoma cells through XBP-1-mediated up-regulation of TRAIL-R2. Molecular Cancer, 2009, 8, 122.	19.2	54