Yuan Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5984235/publications.pdf Version: 2024-02-01

ΥΠΑΝ ΥΠΑΝ

#	Article	lF	CITATIONS
1	By restoring autophagic flux and improving mitochondrial function, corosolic acid protects against Dox-induced cardiotoxicity. Cell Biology and Toxicology, 2022, 38, 451-467.	5.3	16
2	Alteration of Autonomic Nervous System Is Associated With Severity and Outcomes in Patients With COVID-19. Frontiers in Physiology, 2021, 12, 630038.	2.8	50
3	High-Mobility Group A1 Promotes Cardiac Fibrosis by Upregulating FOXO1 in Fibroblasts. Frontiers in Cell and Developmental Biology, 2021, 9, 666422.	3.7	8
4	Long non-coding RNA Pvt1 modulates the pathological cardiac hypertrophy via miR-196b-mediated OSMR regulation. Cellular Signalling, 2021, 86, 110077.	3.6	7
5	Nucleotide-Binding Oligomerization Domain-Like Receptor 3 Deficiency Attenuated Isoproterenol-Induced Cardiac Fibrosis via Reactive Oxygen Species/High Mobility Group Box 1 Protein Axis. Frontiers in Cell and Developmental Biology, 2020, 8, 713.	3.7	8
6	The effect of HMGA1 in LPS-induced Myocardial Inflammation. International Journal of Biological Sciences, 2020, 16, 1798-1810.	6.4	26
7	High-mobility group AT-hook 1 promotes cardiac dysfunction in diabetic cardiomyopathy via autophagy inhibition. Cell Death and Disease, 2020, 11, 160.	6.3	32
8	Leukocyte immunoglobulin-like receptor B4 protects against cardiac hypertrophy via SHP-2-dependent inhibition of the NF-IºB pathway. Journal of Molecular Medicine, 2020, 98, 691-705.	3.9	11
9	Corosolic acid attenuates cardiac fibrosis following myocardial infarction in mice. International Journal of Molecular Medicine, 2020, 45, 1425-1435.	4.0	7
10	Zingerone attenuates aortic bandingâ€induced cardiac remodelling via activating the eNOS/Nrf2 pathway. Journal of Cellular and Molecular Medicine, 2019, 23, 6466-6478.	3.6	19
11	Protective role of berberine in isoprenaline-induced cardiac fibrosis in rats. BMC Cardiovascular Disorders, 2019, 19, 219.	1.7	13
12	Indigo Fruits Ingredient, Aucubin, Protects against LPS-Induced Cardiac Dysfunction in Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 348-359.	2.5	20
13	The 5-Lipoxygenase Inhibitor Zileuton Protects Pressure Overload-Induced Cardiac Remodeling via Activating PPAR <i>α</i> . Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	4.0	15
14	The protective effect of high mobility group protein HMGA2 in pressure overload-induced cardiac remodeling. Journal of Molecular and Cellular Cardiology, 2019, 128, 160-178.	1.9	20
15	Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1421-1427.	3.8	40
16	Corosolic acid ameliorates cardiac hypertrophy via regulating autophagy. Bioscience Reports, 2019, 39,	2.4	14
17	TAX1BP1 overexpression attenuates cardiac dysfunction and remodeling in STZ-induced diabetic cardiomyopathy in mice by regulating autophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1728-1743.	3.8	51
18	Aucubin protects against pressure overloadâ€induced cardiac remodelling <i>via</i> the β ₃ â€adrenoceptor–neuronal NOS cascades. British Journal of Pharmacology, 2018, 175, 1548-1566.	5.4	36

Yuan Yuan

#	Article	IF	CITATIONS
19	Aucubin Protects against Myocardial Infarction-Induced Cardiac Remodeling via nNOS/NO-Regulated Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	26
20	Role of autophagy in a model of obesity: A long‑term high fat diet induces cardiac dysfunction. Molecular Medicine Reports, 2018, 18, 3251-3261.	2.4	20
21	Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target. Basic Research in Cardiology, 2018, 113, 37.	5.9	87
22	Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy. International Journal of Molecular Medicine, 2017, 39, 199-207.	4.0	10
23	Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. Journal of Cellular Biochemistry, 2017, 118, 3899-3910.	2.6	43
24	Evodiamine attenuates TGF-β 1-induced fibroblast activation and endothelial to mesenchymal transition. Molecular and Cellular Biochemistry, 2017, 430, 81-90.	3.1	28
25	Evodiamine Prevents Isoproterenol-Induced Cardiac Fibrosis by Regulating Endothelial-to-Mesenchymal Transition. Planta Medica, 2017, 83, 761-769.	1.3	26
26	Mechanisms contributing to cardiac remodelling. Clinical Science, 2017, 131, 2319-2345.	4.3	132
27	Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food and Function, 2017, 8, 2875-2885.	4.6	58
28	Acacetin protects against cardiac remodeling after myocardial infarction by mediating MAPK and PI3K/Akt signal pathway. Journal of Pharmacological Sciences, 2017, 135, 156-163.	2.5	32
29	Sesamin Protects Against Cardiac Remodeling Via Sirt3/ROS Pathway. Cellular Physiology and Biochemistry, 2017, 44, 2212-2227.	1.6	35
30	Baicalein protects against endothelial cell injury by inhibiting the TLR4/NFâ€'κB signaling pathway. Molecular Medicine Reports, 2017, 17, 3085-3091.	2.4	11
31	Puerarin Protects against Cardiac Fibrosis Associated with the Inhibition of TGF- <i>β</i> 1/Smad2-Mediated Endothelial-to-Mesenchymal Transition. PPAR Research, 2017, 2017, 1-14.	2.4	27
32	Mnk1 (Mitogen-Activated Protein Kinase–Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice. Hypertension, 2016, 68, 1393-1399.	2.7	30
33	Achievement of a target dose of bisoprolol may not be a preferred option for attenuating pressure overload-induced cardiac hypertrophy and fibrosis. Experimental and Therapeutic Medicine, 2016, 12, 2027-2038.	1.8	11
34	Puerarin attenuates the inflammatory response and apoptosis in LPS-stimulated cardiomyocytes. Experimental and Therapeutic Medicine, 2016, 11, 415-420.	1.8	38
35	OX40 regulates pressure overload-induced cardiac hypertrophy and remodelling via CD4+ T-cells. Clinical Science, 2016, 130, 2061-2071.	4.3	35
36	Protection against cardiac hypertrophy by geniposide involves the GLPâ€1 receptor / AMPKα signalling pathway. British Journal of Pharmacology, 2016, 173, 1502-1516.	5.4	94

Yuan Yuan

#	Article	IF	CITATIONS
37	Pleiotropic and puzzling effects of ATF3 in maladaptive cardiac remodeling. International Journal of Cardiology, 2016, 206, 87-88.	1.7	5
38	Sanguinarine inhibits angiotensin II-induced apoptosis in H9c2 cardiac cells via restoring reactive oxygen species-mediated decreases in the mitochondrial membrane potential. Molecular Medicine Reports, 2015, 12, 3400-3408.	2.4	20
39	3,3′-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5′-adenosine monophosphate-activated protein kinase-α. Molecular Medicine Reports, 2015, 12, 1247-1252.	2.4	13
40	Pachymic acid protects H9c2 cardiomyocytes from lipopolysaccharide-induced inflammation and apoptosis by inhibiting the extracellular signal-regulated kinase 1/2 and p38 pathways. Molecular Medicine Reports, 2015, 12, 2807-2813.	2.4	25
41	lcariin protects H9c2 cardiomyocytes from lipopolysaccharide-induced injury via inhibition of the reactive oxygen species-dependent c-Jun N-terminal kinases/nuclear factor-l®B pathway. Molecular Medicine Reports, 2015, 11, 4327-4332.	2.4	23
42	Naringenin attenuates pressure overload-induced cardiac hypertrophy. Experimental and Therapeutic Medicine, 2015, 10, 2206-2212.	1.8	34
43	Cathepsin B deficiency attenuates cardiac remodeling in response to pressure overload via TNF-α/ASK1/JNK pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1143-H1154.	3.2	71
44	Oleanolic acid alleviated pressure overload-induced cardiac remodeling. Molecular and Cellular Biochemistry, 2015, 409, 145-154.	3.1	23
45	Soluble ST2 may possess special superiority as a risk predictor in heart failure patients. International Journal of Cardiology, 2015, 186, 146-147.	1.7	5
46	DIM attenuates TGF-β1-induced myofibroblast differentiation in neonatal rat cardiac fibroblasts. International Journal of Clinical and Experimental Pathology, 2015, 8, 5121-8.	0.5	8
47	lcariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways. Experimental and Therapeutic Medicine, 2014, 7, 1116-1122.	1.8	33
48	Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes. Molecular Medicine Reports, 2014, 9, 1941-1946.	2.4	36
49	ATF3 regulates multiple targets and may play a dual role in cardiac hypertrophy and injury. International Journal of Cardiology, 2014, 174, 838-839.	1.7	35
50	Puerarin attenuates pressure overload-induced cardiac hypertrophy. Journal of Cardiology, 2014, 63, 73-81.	1.9	73
51	Evidence for a Novel Autosomal Dominant Retinitis Pigmentosa Linked to Chromosome 1p22.1-q12 in a Chinese Family. Current Eye Research, 2011, 36, 154-167.	1.5	5
52	Molecular genetic analysis of a new form of spinocerebellar ataxia in a Chinese Han family. Neuroscience Letters, 2010, 479, 321-326.	2.1	3