
Berk Hess

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5983798/publications.pdf Version: 2024-02-01

REDK HESS

#	Article	IF	CITATIONS
1	GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 2008, 4, 435-447.	2.3	13,875
2	GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 2005, 26, 1701-1718.	1.5	13,676
3	LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 1997, 18, 1463-1472.	1.5	13,446
4	P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. Journal of Chemical Theory and Computation, 2008, 4, 116-122.	2.3	2,976
5	Implementation of the CHARMM Force Field in CROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. Journal of Chemical Theory and Computation, 2010, 6, 459-466.	2.3	866
6	Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. Journal of Computational Chemistry, 1999, 20, 786-798.	1.5	779
7	Determining the shear viscosity of model liquids from molecular dynamics simulations. Journal of Chemical Physics, 2002, 116, 209.	1.2	620
8	A flexible algorithm for calculating pair interactions on SIMD architectures. Computer Physics Communications, 2013, 184, 2641-2650.	3.0	544
9	Hydration Thermodynamic Properties of Amino Acid Analogues:Â A Systematic Comparison of Biomolecular Force Fields and Water Models. Journal of Physical Chemistry B, 2006, 110, 17616-17626.	1.2	305
10	Similarities between principal components of protein dynamics and random diffusion. Physical Review E, 2000, 62, 8438-8448.	0.8	276
11	Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. Journal of Chemical Physics, 2020, 153, 134110.	1.2	275
12	Photoactivation of the Photoactive Yellow Protein:Â Why Photon Absorption Triggers a Trans-to-Cis Isomerization of the Chromophore in the Protein. Journal of the American Chemical Society, 2004, 126, 4228-4233.	6.6	265
13	Cation specific binding with protein surface charges. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13296-13300.	3.3	226
14	Reproducible Polypeptide Folding and Structure Prediction using Molecular Dynamics Simulations. Journal of Molecular Biology, 2005, 354, 173-183.	2.0	165
15	Lennard-Jones Lattice Summation in Bilayer Simulations Has Critical Effects on Surface Tension and Lipid Properties. Journal of Chemical Theory and Computation, 2013, 9, 3527-3537.	2.3	138
16	Osmotic coefficients of atomistic NaCl (aq) force fields. Journal of Chemical Physics, 2006, 124, 164509.	1.2	132
17	Analysis and Evaluation of Channel Models: Simulations of Alamethicin. Biophysical Journal, 2002, 83, 2393-2407.	0.2	123
18	Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate. Soft Matter, 2006, 2, 409-414.	1.2	123

Berk Hess

#	Article	IF	CITATIONS
19	Direct-Space Corrections Enable Fast and Accurate Lorentz–Berthelot Combination Rule Lennard-Jones Lattice Summation. Journal of Chemical Theory and Computation, 2015, 11, 5737-5746.	2.3	112
20	Modeling Multibody Effects in Ionic Solutions with a Concentration Dependent Dielectric Permittivity. Physical Review Letters, 2006, 96, 147801.	2.9	110
21	Competing Adsorption between Hydrated Peptides and Water onto Metal Surfaces: From Electronic to Conformational Properties. Journal of the American Chemical Society, 2008, 130, 13460-13464.	6.6	68
22	Dynamics and Structure of Ln(III)â^'Aqua Ions: A Comparative Molecular Dynamics Study Using ab Initio Based Flexible and Polarizable Model Potentials. Journal of Physical Chemistry B, 2009, 113, 7270-7281.	1.2	62
23	310-Helix Conformation Facilitates the Transition of a Voltage Sensor S4 Segment toward the Down State. Biophysical Journal, 2011, 100, 1446-1454.	0.2	54
24	An application of flexible constraints in Monte Carlo simulations of the isobaric–isothermal ensemble of liquid water and ice Ih with the polarizable and flexible mobile charge densities in harmonic oscillators model. Journal of Chemical Physics, 2004, 120, 11133-11143.	1.2	53
25	Ion Pairing in Aqueous Electrolyte Solutions with Biologically Relevant Anions. Journal of Physical Chemistry B, 2011, 115, 3734-3739.	1.2	46
26	GROMACS—the road ahead. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 710-715.	6.2	43
27	Molecular origin of contact line friction in dynamic wetting. Physical Review Fluids, 2018, 3, .	1.0	40
28	Fast-Growth Thermodynamic Integration:  Calculating Excess Chemical Potentials of Additive Molecules in Polymer Microstructures. Macromolecules, 2008, 41, 2283-2289.	2.2	34
29	Flexible constraints: An adiabatic treatment of quantum degrees of freedom, with application to the flexible and polarizable mobile charge densities in harmonic oscillators model for water. Journal of Chemical Physics, 2002, 116, 9602-9610.	1.2	31
30	Sequence dependency of canonical base pair opening in the DNA double helix. PLoS Computational Biology, 2017, 13, e1005463.	1.5	31
31	Algorithm improvements for molecular dynamics simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 93-108.	6.2	30
32	Driving Forces for Adsorption of Amphiphilic Peptides to the Airâ^'Water Interface. Journal of Physical Chemistry B, 2010, 114, 11093-11101.	1.2	28
33	Further investigation on the validity of Stokes–Einstein behaviour at the molecular level. Chemical Physics Letters, 2001, 334, 337-342.	1.2	27
34	Ten simple rules on how to create open access and reproducible molecular simulations of biological systems. PLoS Computational Biology, 2019, 15, e1006649.	1.5	25
35	Water–substrate physico-chemistry in wetting dynamics. Journal of Fluid Mechanics, 2015, 781, 695-711.	1.4	23
36	Modeling Solubilities of Additives in Polymer Microstructures: Single-Step Perturbation Method Based on a Soft-Cavity Reference State. Macromolecules, 2008, 41, 5055-5061.	2.2	22

Berk Hess

#	Article	IF	CITATIONS
37	Riemann metric approach to optimal sampling of multidimensional free-energy landscapes. Physical Review E, 2018, 98, 023312.	0.8	18
38	Predictive Modeling of Phenol Chemical Potentials in Molten Bisphenol Aâ^Polycarbonate over a Broad Temperature Range. Macromolecules, 2008, 41, 7281-7283.	2.2	16
39	The accelerated weight histogram method for alchemical free energy calculations. Journal of Chemical Physics, 2021, 154, 204103.	1.2	15
40	Probing microscopic material properties inside simulated membranes through spatially resolved three-dimensional local pressure fields and surface tensions. Chemistry and Physics of Lipids, 2013, 169, 106-112.	1.5	11
41	Regularizing the fast multipole method for use in molecular simulation. Journal of Chemical Physics, 2019, 151, 234113.	1.2	10
42	Nanoscale sheared droplet: volume-of-fluid, phase-field and no-slip molecular dynamics. Journal of Fluid Mechanics, 2022, 940, .	1.4	10
43	Stability of Hydrophobically Modified Poly(p-phenylenesulfonate) Bundles As Observed by Molecular Dynamics Simulation. Macromolecules, 2007, 40, 1703-1707.	2.2	9
44	Chain packing in polycarbonate glasses. Journal of Chemical Physics, 2010, 132, 104901.	1.2	6
45	Interaction of Water with N,N′â~'1,2-Ethanediyl-bis(6-hydroxy-hexanamide) Crystals: A Simulation Study. Journal of Physical Chemistry B, 2009, 113, 627-631.	1.2	3
46	Electrowetting diminishes contact line friction in molecular wetting. Physical Review Fluids, 2020, 5, .	1.0	3