
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5983619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of nuclear elastic scattering on ion heating characteristics in deuterium-tritium thermonuclear plasmas. Physics of Plasmas, 2006, 13, 062507.	1.9	33
2	Performance of high-temperature gas-cooled reactor as a tritium production device for fusion reactors. Nuclear Engineering and Design, 2012, 243, 95-101.	1.7	23
3	Evaluation of Tritium Confinement Performance of Alumina and Zirconium for Tritium Production in a High-Temperature Gas-Cooled Reactor for Fusion Reactors. Fusion Science and Technology, 2015, 68, 662-668.	1.1	17
4	Effect of thermal ³ He minorities on knock-on tail formation and the resulting neutron emission spectrum modification in deuterium–tritium plasmas. Plasma Physics and Controlled Fusion, 2011, 53, 035023.	2.1	16
5	Modification of alpha-particle emission spectrum in beam-injected deuterium-tritium plasmas. Physics of Plasmas, 2009, 16, 042507.	1.9	15
6	Core configuration of a gas-cooled reactor as a tritium production device for fusion reactor. Nuclear Engineering and Design, 2014, 271, 505-509.	1.7	14
7	Incident neutron spectra on the first wall and their application to energetic ion diagnostics in beam-injected deuterium–tritium tokamak plasmas. Physics of Plasmas, 2017, 24, 092517.	1.9	13
8	Observation of neutron emission anisotropy by neutron activation measurement in beam-injected LHD deuterium plasmas. Nuclear Fusion, 2020, 60, 076017.	3.5	13
9	Distortion of bulk-ion distribution function due to nuclear elastic scattering and its effect on T(d,n)He4 reaction rate coefficient in neutral-beam-injected deuterium-tritium plasmas. Physics of Plasmas, 2007, 14, 054504.	1.9	11
10	Study on a method for loading a Li compound to produce tritium using high-temperature gas-cooled reactor. Nuclear Engineering and Design, 2015, 292, 277-282.	1.7	11
11	Evaluation of tritium production rate in a gas-cooled reactor with continuous tritium recovery system for fusion reactors. Fusion Engineering and Design, 2013, 88, 2219-2222.	1.9	9
12	A study on transmutation of LLFPs using various types of HTGRs. Nuclear Engineering and Design, 2016, 300, 330-338.	1.7	8
13	Estimation of the Fast-Ion Anisotropy Effect on the Neutron Source Intensity Measurement and the Experimental Observation. IEEE Transactions on Plasma Science, 2019, 47, 12-17.	1.3	8
14	Effect of Nuclear Plus Interference Scattering on Fast-Ion Slowing-Down Distribution Functions in Thermonuclear Plasmas. Plasma and Fusion Research, 2012, 7, 2403076-2403076.	0.7	8
15	Knock-on Tail Formation Due to Nuclear Elastic Scattering and Its Observation Method Using <i>l³</i> -Ray-Generating ⁶ Li+d Reaction in Tokamak Deuterium Plasmas. Plasma and Fusion Research, 2016, 11, 1403105-1403105.	0.7	7
16	Evaluation of hydrogen permeation rate through zirconium pipe. Nuclear Materials and Energy, 2018, 16, 12-18.	1.3	7
17	Observation of a nuclear-elastic-scattering effect caused by energetic protons on deuteron slowing-down behaviour on the Large Helical Device. Nuclear Fusion, 2020, 60, 066007.	3.5	7
18	Use of Î ³ -Ray-Generating 6Li+D Reaction for Verification of Boltzmann-Fokker-Planck Simulation and Knock-on Tail Diagnostic in Neutral-Beam-Injected Plasmas. Plasma and Fusion Research, 2007, 2, S1078-S1078.	0.7	7

#	Article	IF	CITATIONS
19	Study on lithium rod test module and irradiation method for tritium production using high temperature gas-cooled reactor. Fusion Engineering and Design, 2018, 136, 587-591.	1.9	6
20	Distortion of fuel-ion distribution functions by Alfvén eigenmodes in a tokamak DT plasma. Plasma Physics and Controlled Fusion, 2018, 60, 105003.	2.1	6
21	Nuclear and thermal feasibility of lithium-loaded high temperature gas-cooled reactor for tritium production for fusion reactors. Fusion Engineering and Design, 2018, 136, 357-361.	1.9	6
22	On the Possibility of Electron Degeneracy Diagnostics in Laser-Imploded DT Fuel for Fast Ignition. Fusion Science and Technology, 2009, 56, 391-394.	1.1	5
23	A Verification Scenario of Ion-Heating Enhancement due to Nuclear Plus Interference Scattering. Fusion Science and Technology, 2011, 60, 630-634.	1.1	5
24	A Verification Scenario of Knock-on Tail Formation due to Nuclear Plus Interference Scattering in ³ He-Containing Deuterium Plasmas. Plasma and Fusion Research, 2013, 8, 2403064-2403064.	0.7	5
25	Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors. Nuclear Materials and Energy, 2016, 9, 524-528.	1.3	5
26	Method for determining the shape and size of a knock-on tail using the Doppler-broadened Î ³ -ray emission spectrum. Fusion Engineering and Design, 2019, 144, 62-67.	1.9	5
27	Li-rod structure in high-temperature gas-cooled reactor as a tritium production device for fusion reactors. Fusion Engineering and Design, 2019, 146, 1077-1081.	1.9	5
28	Prediction of Neutron Emission Anisotropy for Validation of an Analysis Model for Neutron Spectra in Beam-Injected LHD Deuterium Plasmas. Plasma and Fusion Research, 2019, 14, 3403123-3403123.	0.7	5
29	Effect of nuclear heat caused by the 6Li(n,α)T reaction on tritium containment performance of tritium production module in High-Temperature Gas-Cooled reactor for fusion reactors. Nuclear Engineering and Design, 2022, 386, 111584.	1.7	5
30	Neutron Incident Angle and Energy Distribution at Vacuum Vessel for Beam-Injected Deuterium Plasmas in the Large Helical Device. Plasma and Fusion Research, 2016, 11, 2403049-2403049.	0.7	4
31	Study on hydrogen absorption in Zr powder used for tritium confinement in a production system of tritium for fusion reactors with a high-temperature gas-cooled reactor. Nuclear Materials and Energy, 2018, 17, 289-294.	1.3	4
32	Alpha Particle Slowing-Down Characteristics and the Effect on MHD Instability Excitation at High-Density Operation Points in FFHRs. Plasma and Fusion Research, 2011, 6, 2405086-2405086.	0.7	4
33	Study on Tritium Production Using a High-Temperature Gas-Cooled Reactor for Fusion Reactors: Evaluation of Tritium Outflow by Non-Equilibrium Diffusion Simulations. Fusion Science and Technology, 2017, 72, 753-759.	1.1	3
34	Fast deuteron diagnostics using visible light spectra of 3He produced by deuteron–deuteron reaction in deuterium plasmas. Review of Scientific Instruments, 2021, 92, 053524.	1.3	3
35	The T-containment properties of a Zr-containing Li rod in a high-temperature gas-cooled reactor as a T production device for fusion reactors. Fusion Engineering and Design, 2021, 169, 112441.	1.9	3
36	Effect of Nuclear Elastic Scattering on Neutral Beam Injection Heating in Thermonuclear Plasmas. Fusion Science and Technology, 2005, 47, 796-800.	1.1	2

#	Article	IF	CITATIONS
37	A Verification Scenario of Nuclear Plus Interference Scattering Effects Using Neutron Incident Angle Distribution to the Wall in Beam-Injected Deuterium Plasmas. Plasma and Fusion Research, 2015, 10, 3403055-3403055.	0.7	2
38	Anisotropic Neutron Emission Spectrum and Its Utilization for Verification of Nuclear Elastic Scattering Effect in Proton-Beam-Injected Deuterium Plasmas. IEEE Transactions on Plasma Science, 2018, 46, 2301-2306.	1.3	2
39	Modification of neutron emission spectrum by Alfvén eigenmodes in a deuterium–tritium plasma. Fusion Engineering and Design, 2019, 146, 320-324.	1.9	2
40	Effect of Large-Angle Scattering between lons and Neutral Particles on the Density Profile at the Divertor Plate. Plasma and Fusion Research, 2021, 16, 2403021-2403021.	0.7	2
41	Effect of nuclear elastic scattering on the D(d,n) ³ He fusion reactivity induced by energetic protons observed in the large helical device. Nuclear Fusion, 2021, 61, 094001.	3.5	2
42	Diagnostics Method for 2-D Velocity Distribution Function of Beam Deuterons Using Visible Light of Energetic ³ He in Deuterium Plasmas. IEEE Transactions on Plasma Science, 2021, 49, 3142-3148.	1.3	2
43	Effect of nuclear elastic scattering on plasma heating characteristics in deuteron–triton thermonuclear plasmas. Journal of Plasma Physics, 2006, 72, 1193.	2.1	1
44	Effect of Nuclear Plus Interference Scattering on Fast <i>α</i> -Particle Orbit and Confinement in Magnetic Field Configuration. Plasma and Fusion Research, 2013, 8, 2403033-2403033.	0.7	1
45	Evaluation of Fusion Reactivity Enhancement due to Nuclear Plus Interference Scattering in ³ He-Containing Deuterium Plasmas. Plasma and Fusion Research, 2014, 9, 3402062-3402062.	0.7	1
46	Study on Operation Scenario of Tritium Production for a Fusion Reactor Using a High Temperature Gas-Cooled Reactor. Fusion Science and Technology, 2015, 68, 397-401.	1.1	1
47	Modification of Neutron Emission Spectra and Determination of Fuel Ion Ratio in Beam-Injected Deuterium-Tritium Plasma. Plasma and Fusion Research, 2016, 11, 2405078-2405078.	0.7	1
48	Observation Scenario of Knock-on Tail Shape Using Doppler-Broadening. IEEE Transactions on Plasma Science, 2019, 47, 910-914.	1.3	1
49	Calculation of low-energy electron antineutrino spectra emitted from nuclear reactors with consideration of fuel burn-up. Journal of Nuclear Science and Technology, 2019, 56, 369-375.	1.3	1
50	Evaluation of tritium confinement performance of the assembly composed of zirconium and alumina simulating lithium rod. Fusion Engineering and Design, 2021, 168, 112372.	1.9	1
51	On the Ion Distribution Function in Degenerate Electron Plasmas. Plasma and Fusion Research, 2013, 8, 3404050-3404050.	0.7	1
52	Effect of Nuclear Elastic Scattering on Ion Heating in Thermonuclear Plasmas. , 2005, , .		0
53	Modification of Alpha-Particle Emission Spectrum and Its Verification Scenario Using ⁹ Be+α Reaction in Beam-Injected DT Plasmas. Fusion Science and Technology, 2009, 56, 114-118.	1.1	0
54	Distortion of Fast <i>α</i> -Particle Two-Dimensional Velocity Distribution Function due to the Transition of Particle Orbit by Nuclear Elastic Scattering in Magnetic Field Confinement. Plasma and Fusion Research, 2016, 11, 1403067-1403067.	0.7	0

#	Article	IF	CITATIONS
55	A Method of Knock-on Tail Observation Accounting Temperature Fluctuation Using ⁶ Li+T/D+T Reaction in Deuterium Plasma. Plasma and Fusion Research, 2017, 12, 1403043-1403043.	0.7	0
56	Estimation of Anisotropic Neutron Emission Spectrum Using Spatial Neutron Flux Profile Outside Vacuum Vessel. Plasma and Fusion Research, 2021, 16, 2405064-2405064.	0.7	0
57	Distortion of Bulk-Electron Distribution Function and Its Effect on Core Heating in Fast Ignition Plasmas. Plasma and Fusion Research, 2010, 5, S2070-S2070.	0.7	0
58	Knock-on Tail Observation Scenario Using VUV and VIS Spectra from Energetic Ions Produced by ⁶ Li+d Reaction. Plasma and Fusion Research, 2019, 14, 3403147-3403147.	0.7	0
59	Comparative Studies on the Control Algorithm for the High-Density Ignition Regime in FFHR-d1. Plasma and Fusion Research, 2020, 15, 2405059-2405059.	0.7	0
60	Modification of the DD Neutron Emission Spectrum at the 2.4 - 2.5 MeV Energy Range in Neutral-Beam-Injection-Heated Plasma and Its Application to Fuel Ion Ratio Diagnostics. Plasma and Fusion Research, 2020, 15, 1403080-1403080.	0.7	0
61	Permeation behavior of gaseous tritium through the assembly composed of Zr and Al2O3 simulating Li rod. Nuclear Materials and Energy, 2022, 31, 101170.	1.3	0