
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5983528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. Bioresource Technology, 2020, 303, 122929.	9.6	112
2	Lignocellulosic biomass feedstock transportation alternatives, logistics, equipment configurations, and modeling. Biofuels, Bioproducts and Biorefining, 2012, 6, 351-362.	3.7	111
3	Pyrolysis of mixed municipal solid waste: Characterisation, interaction effect and kinetic modelling using the thermogravimetric approach. Waste Management, 2019, 90, 152-167.	7.4	64
4	Optimization of novel photobioreactor design using computational fluid dynamics. Applied Energy, 2015, 140, 246-255.	10.1	58
5	Renewable hydrogen and methane production from microalgae: A techno-economic and life cycle assessment study. Journal of Cleaner Production, 2021, 279, 123726.	9.3	57
6	Biomass feedstock preprocessing and longâ€distance transportation logistics. GCB Bioenergy, 2016, 8, 160-170.	5.6	51
7	Resiliency optimization of biomass to biofuel supply chain incorporating regional biomass pre-processing depots. Biomass and Bioenergy, 2017, 97, 116-131.	5.7	50
8	Life cycle assessment of ethanol production in a rice-straw-based biorefinery in India. Clean Technologies and Environmental Policy, 2020, 22, 409-422.	4.1	47
9	Development and application of BioFeed model for optimization of herbaceous biomass feedstock production. Biomass and Bioenergy, 2011, 35, 2961-2974.	5.7	44
10	Assessment of circular economy for global sustainability using an integrated model. Resources, Conservation and Recycling, 2019, 151, 104460.	10.8	39
11	Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid. Waste Management, 2021, 126, 52-64.	7.4	35
12	Agent-Based Analysis of Biomass Feedstock Production Dynamics. Bioenergy Research, 2011, 4, 258-275.	3.9	34
13	Techno-Economic and Life Cycle Assessment of Pyrolysis of Unsegregated Urban Municipal Solid Waste in India. Industrial & Engineering Chemistry Research, 2021, 60, 1473-1482.	3.7	33
14	Multi-objective optimization of sugarcane bagasse utilization in an Indian sugar mill. Sustainable Production and Consumption, 2019, 18, 96-114.	11.0	29
15	Multi-objective optimization of integrated biodiesel production and separation system. Fuel, 2019, 243, 519-532.	6.4	28
16	Sustainability Challenges and Opportunities in Pectin Extraction from Fruit Waste. ACS Engineering Au, 2022, 2, 61-74.	5.1	28
17	Is Sustainability Achievable? Exploring the Limits of Sustainability with Model Systems. Environmental Science & Technology, 2008, 42, 6710-6716.	10.0	27
18	Model-based optimisation of biodiesel production from microalgae. Computers and Chemical Engineering, 2016, 89, 222-249.	3.8	27

#	Article	IF	CITATIONS
19	Economic analysis and life cycle impact assessment of municipal solid waste (MSW) disposal: A case study of Mumbai, India. Waste Management and Research, 2018, 36, 1177-1189.	3.9	26
20	Optimal Control Theory for Sustainable Environmental Management. Environmental Science & Technology, 2008, 42, 5322-5328.	10.0	23
21	Optimal control of enzymatic hydrolysis of lignocellulosic biomass. Resource-efficient Technologies, 2016, 2, S96-S104.	0.1	23
22	Economic and Environmental Assessment of Succinic Acid Production from Sugarcane Bagasse. ACS Sustainable Chemistry and Engineering, 2021, 9, 12738-12746.	6.7	23
23	Life-cycle assessment-based comparison of different lignocellulosic ethanol production routes. Biofuels, 2022, 13, 237-247.	2.4	22
24	Catalytic reactive flash volatilisation of microalgae to produce hydrogen or methane-rich syngas. Applied Catalysis B: Environmental, 2019, 251, 326-334.	20.2	22
25	Resilient design of biomass to energy system considering uncertainty in biomass supply. Computers and Chemical Engineering, 2019, 131, 106593.	3.8	20
26	Advanced control with parameter estimation of batch transesterification reactor. Journal of Process Control, 2015, 33, 127-139.	3.3	19
27	Conceptual design of a lignocellulosic biorefinery and its supply chain for ethanol production in India. Computers and Chemical Engineering, 2019, 121, 696-721.	3.8	19
28	Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components. Renewable Energy, 2020, 148, 388-401.	8.9	18
29	Dynamic impact assessment of resource depletion: A case study of natural gas in New Zealand. Sustainable Production and Consumption, 2019, 18, 165-178.	11.0	17
30	A consequence analysis study of natural gas consumption in a developing country: Case of India. Energy Policy, 2020, 145, 111675.	8.8	17
31	Renewable energy, bioenergy. Current Opinion in Chemical Engineering, 2017, 17, 42-47.	7.8	16
32	Process Design and Techno-Economic Feasibility Analysis of an Integrated Pineapple Processing Waste Biorefinery. ACS Engineering Au, 2022, 2, 208-218.	5.1	16
33	Cost reduction approaches for fermentable sugar production from sugarcane bagasse and its impact on techno-economics and the environment. Cellulose, 2021, 28, 6305-6322.	4.9	15
34	Optimization of integrated microalgal biorefinery producing fuel and valueâ€∎dded products. Biofuels, Bioproducts and Biorefining, 2017, 11, 1030-1050.	3.7	13
35	Assessment of bagasse and trash utilization for ethanol production: A case study in india. Environmental Progress and Sustainable Energy, 2018, 37, 2165-2174.	2.3	13
36	Optimal control of dilute acid pretreatment and enzymatic hydrolysis for processing lignocellulosic feedstock. Journal of Process Control, 2017, 56, 100-111.	3.3	12

#	Article	IF	CITATIONS
37	Multi-objective optimization of lignocellulosic feedstock selection for ethanol production in India. Journal of Cleaner Production, 2019, 231, 1226-1234.	9.3	12
38	Efficient optimization of a large-scale biorefinery system using a novel decomposition based approach. Chemical Engineering Research and Design, 2020, 160, 175-189.	5.6	10
39	Multi objective optimization of ethanol production based on regional resource availability. Sustainable Production and Consumption, 2021, 27, 1124-1137.	11.0	10
40	Sugarcane bagasse valorization to xylitol: Technoâ€economic and life cycle assessment. Biofuels, Bioproducts and Biorefining, 2022, 16, 1214-1226.	3.7	9
41	Sensitivity analysis and stochastic modelling of lignocellulosic feedstock pretreatment and hydrolysis. Computers and Chemical Engineering, 2017, 106, 23-39.	3.8	8
42	Economic optimization of acid pretreatment: Structural changes and impact on enzymatic hydrolysis. Industrial Crops and Products, 2020, 147, 112236.	5.2	8
43	Parameter estimation and optimal control of a batch transesterification reactor: An experimental study. Chemical Engineering Research and Design, 2020, 157, 1-12.	5.6	7
44	Stochastic optimization of enzymatic hydrolysis of lignocellulosic biomass. Computers and Chemical Engineering, 2020, 135, 106776.	3.8	7
45	Integrated microalgae biorefinery: Impact of product demand profile and prospect of carbon capture. Biofuels, Bioproducts and Biorefining, 2017, 11, 1065-1076.	3.7	6
46	Laboratory-Scale Performance of Pyrolysis of Unsegregated Municipal Solid Waste. Industrial & Engineering Chemistry Research, 2020, 59, 22656-22666.	3.7	6
47	Resiliency considerations in designing commercial scale systems for lignocellulosic ethanol production. Computers and Chemical Engineering, 2021, 147, 107239.	3.8	6
48	Impact of protein co-production on techno-economic feasibility of microalgal biodiesel. Computer Aided Chemical Engineering, 2016, 38, 1803-1808.	0.5	5
49	Economic optimization of integrated lignocellulosic biorefinery. Computer Aided Chemical Engineering, 2017, 40, 2503-2508.	0.5	5
50	Constrained iterative learning control of batch transesterification process under uncertainty. Control Engineering Practice, 2020, 103, 104580.	5.5	5
51	An outlook for dynamic impact assessment of resource depletion at the global level: learnings from regional case studies. Clean Technologies and Environmental Policy, 2020, 22, 745-755.	4.1	4
52	Integrated model for food-energy-water (FEW) nexus to study global sustainability: The main generalized global sustainability model (GGSM). PLoS ONE, 2022, 17, e0267403.	2.5	4
53	Optimization of cellulose hydrolysis in a non-ideally mixed reactors. Computers and Chemical Engineering, 2019, 128, 340-351.	3.8	3
54	Sustainability driven design of lignocellulosic ethanol system highlighting importance of water footprint. Biomass and Bioenergy, 2021, 151, 106174.	5.7	3

#	Article	IF	CITATIONS
55	Dynamic optimization of a batch transesterification process for biodiesel production. , 2016, , .		2
56	Deterministic and stochastic optimization of dilute acid pretreatment of sugarcane bagasse. Biofuels, 2019, , 1-12.	2.4	2
57	Life cycle and techno-economic assessment of microalgal biofuels. , 2022, , 547-565.		2
58	Integrated model for Food-Energy-Water (FEW) nexus to study global sustainability: The water compartments and water stress analysis. PLoS ONE, 2022, 17, e0266554.	2.5	2
59	Optimization based design of a resilient biomass to energy system. Computer Aided Chemical Engineering, 2018, 43, 797-802.	0.5	1
60	Optimization based design of an industrial cluster for economic and environmental benefits. Computer Aided Chemical Engineering, 2018, 43, 717-722.	0.5	1
61	Valorization of sugarcane bagasse to lactic acid: Life cycle assessment and Techno-economic evaluation in Indian scenario. Computer Aided Chemical Engineering, 2021, , 1963-1968.	0.5	1
62	Deterministic and Stochastic Optimization of Acid Pretreatment for Lignocellulosic Ethanol Production. Computer Aided Chemical Engineering, 2017, 40, 2149-2154.	0.5	1
63	Sustainability in a global circular economy: Insights on consumer price sensitivity. Journal of Industrial Ecology, 2022, 26, 1094-1107.	5.5	1
64	Optimization of Cellulose Hydrolysis in a Non-ideally Mixed Batch reactor. Computer Aided Chemical Engineering, 2018, 43, 1571-1576.	0.5	0
65	Optimization of a large-scale biorefinery problem by decomposition. Computer Aided Chemical Engineering, 2019, 46, 829-834.	0.5	0
66	Multi-Objective Optimization of Lignocellulosic Ethanol Production Based on Regional Land and Water Availability. Computer Aided Chemical Engineering, 2021, 50, 1611-1616.	0.5	0
67	Development of System Dynamic Model for Sustainability driven Technology Adoption in Indian Transport Sector. Computer Aided Chemical Engineering, 2021, 50, 939-945.	0.5	0
68	Optimization-based design for lignocellulosic ethanol production: a case study of the state of Maharashtra, India. Clean Technologies and Environmental Policy, 0, , 1.	4.1	0