
Arnab Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5983514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NO rapidly mobilizes cellular heme to trigger assembly of its own receptor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
2	GAPDH is involved in the hemeâ€maturation of myoglobin and hemoglobin. FASEB Journal, 2022, 36, e22099.	0.5	18
3	Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches. Cells, 2022, 11, 976.	4.1	13
4	Glucocorticoid Receptor Î ² Isoform Predominates in the Human Dysplastic Brain Region and Is Modulated by Age, Sex, and Antiseizure Medication. International Journal of Molecular Sciences, 2022, 23, 4940.	4.1	5
5	Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. Journal of Biological Chemistry, 2021, 296, 100336.	3.4	32
6	An inherent dysfunction in soluble guanylyl cyclase is present in the airway of severe asthmatics and is associated with aberrant redox enzyme expression and compromised NO-cGMP signaling. Redox Biology, 2021, 39, 101832.	9.0	14
7	Disease-specific platelet signaling defects in idiopathic pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L739-L749.	2.9	6
8	Soluble Guanylate Cyclase Agonists Induce Bronchodilation in Human Small Airways. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 43-48.	2.9	16
9	Heat Shock Proteins Accelerate the Maturation of Brain Endothelial Cell Glucocorticoid Receptor in Focal Human Drug-Resistant Epilepsy. Molecular Neurobiology, 2020, 57, 4511-4529.	4.0	10
10	GAPDH delivers heme to soluble guanylyl cyclase. Journal of Biological Chemistry, 2020, 295, 8145-8154.	3.4	45
11	Myoglobin maturation is driven by the hsp90 chaperone machinery and by soluble guanylyl cyclase. FASEB Journal, 2019, 33, 9885-9896.	0.5	16
12	Hsp90 and Its Role in Heme-Maturation of Client Proteins: Implications for Human Diseases. Heat Shock Proteins, 2019, , 251-268.	0.2	1
13	Hsp90 chaperones hemoglobin maturation in erythroid and nonerythroid cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1117-E1126.	7.1	41
14	Regulation of sGC <i>via</i> hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives. Antioxidants and Redox Signaling, 2017, 26, 182-190.	5.4	19
15	Soluble guanylate cyclase as an alternative target for bronchodilator therapy in asthma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2355-62.	7.1	57
16	sGC redox regulation and asthma. BMC Pharmacology & Toxicology, 2015, 16, .	2.4	0
17	Sertralineâ€induced potentiation of the CYP3A4â€dependent neurotoxicity of carbamazepine: An in vitro study. Epilepsia, 2015, 56, 439-449.	5.1	23
18	Heat Shock Protein 90 Associates with the Per-Arnt-Sim Domain of Heme-free Soluble Guanylate Cyclase. Journal of Biological Chemistry, 2015, 290, 21615-21628.	3.4	22

Arnab Ghosh

#	Article	IF	CITATIONS
19	Dietary Iron, Circadian Clock, and Hepatic Gluconeogenesis: Figure 1. Diabetes, 2015, 64, 1091-1093.	0.6	5
20	Nitric Oxide and Heat Shock Protein 90 Activate Soluble Guanylate Cyclase by Driving Rapid Change in Its Subunit Interactions and Heme Content. Journal of Biological Chemistry, 2014, 289, 15259-15271.	3.4	62
21	Cotransplantation With Myeloid-Derived Suppressor Cells Protects Cell Transplants. Transplantation, 2014, 97, 740-747.	1.0	36
22	Mechanisms driving heme insertion into apo-sGC during its maturation in cells. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	0
23	Ascorbate in Aqueous Humor Augments Nitric Oxide Production by Macrophages. Journal of Immunology, 2013, 190, 556-564.	0.8	6
24	Mechanism of Inducible Nitric-oxide Synthase Dimerization Inhibition by Novel Pyrimidine Imidazoles. Journal of Biological Chemistry, 2013, 288, 19685-19697.	3.4	26
25	Control of Electron Transfer and Catalysis in Neuronal Nitric-oxide Synthase (nNOS) by a Hinge Connecting Its FMN and FAD-NADPH Domains. Journal of Biological Chemistry, 2012, 287, 30105-30116.	3.4	26
26	Myeloid Suppressor Cells Protect Islet Allografts through iNOS-Mediated T Cell Inhibition. Transplantation, 2012, 94, 201.	1.0	0
27	Mechanism of nitric oxide synthase dimerization inhibition by novel pyrimidine imidazoles. Nitric Oxide - Biology and Chemistry, 2012, 27, S34-S35.	2.7	Ο
28	Soluble guanylyl cyclase requires heat shock protein 90 for heme insertion during maturation of the NO-active enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12998-13003.	7.1	59
29	Control Of Electron Transfer And Catalysis In Neuronal NOS By A Hinge Connecting The FMN And FNR Domains. FASEB Journal, 2012, 26, 573.7.	0.5	Ο
30	Hsp90 interacts with inducible NO synthase client protein in its hemeâ€free state and then drives heme insertion by an ATPâ€dependent process. FASEB Journal, 2011, 25, 2049-2060.	0.5	59
31	Nitric oxide blocks cellular heme insertion into a broad range of heme proteins. Free Radical Biology and Medicine, 2010, 48, 1548-1558.	2.9	49
32	p67/MetAP2 Suppresses K-RasV12-Mediated Transformation of NIH3T3 Mouse Fibroblasts in Culture and in Athymic Mice. Biochemistry, 2010, 49, 10146-10157.	2.5	3
33	Autoproteolysis of Rat p67 Generates Several Peptide Fragments:Â The N-Terminal Fragment, p26, Is Required for the Protection of eIF2α from Phosphorylationâ€. Biochemistry, 2007, 46, 3465-3475.	2.5	12
34	The binding between p67 and eukaryotic initiation factor 2 plays important roles in the protection of eIF2α from phosphorylation by kinases. Archives of Biochemistry and Biophysics, 2006, 452, 138-148.	3.0	17
35	The N-terminal lysine residue-rich domain II and the 340–430 amino acid segment of eukaryotic initiation factor 2-associated glycoprotein p67 are the binding sites for the γ-subunit of elF2. Experimental Cell Research, 2006, 312, 3184-3203.	2.6	9
36	The stability of eukaryotic initiation factor 2-associated glycoprotein, p67, increases during skeletal muscle differentiation and that inhibits the phosphorylation of extracellular signal-regulated kinases 1 and 2. Experimental Cell Research, 2005, 303, 174-182.	2.6	13

#	Article	IF	CITATIONS
37	Eukaryotic initiation factor 2-associated glycoprotein, p67, shows differential effects on the activity of certain kinases during serum-starved conditions. Archives of Biochemistry and Biophysics, 2004, 427, 68-78.	3.0	14
38	A Glycosylation Site,60SGTS63, of p67 Is Required for Its Ability To Regulate the Phosphorylation and Activity of Eukaryotic Initiation Factor 2αâ€. Biochemistry, 2003, 42, 5453-5460.	2.5	31