
Qian Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5983485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upconversion Luminescent Materials: Advances and Applications. Chemical Reviews, 2015, 115, 395-465.	23.0	1,815
2	Sub-10 nm Hexagonal Lanthanide-Doped NaLuF ₄ Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. Journal of the American Chemical Society, 2011, 133, 17122-17125.	6.6	768
3	Blue-Emissive Upconversion Nanoparticles for Low-Power-Excited Bioimaging in Vivo. Journal of the American Chemical Society, 2012, 134, 5390-5397.	6.6	390
4	¹⁸ F-Labeled Magnetic-Upconversion Nanophosphors <i>via</i> Rare-Earth Cation-Assisted Ligand Assembly. ACS Nano, 2011, 5, 3146-3157.	7.3	286
5	A General Strategy for Biocompatible, High-Effective Upconversion Nanocapsules Based on Triplet–Triplet Annihilation. Journal of the American Chemical Society, 2013, 135, 5029-5037.	6.6	261
6	High-Efficiency Upconversion Luminescent Sensing and Bioimaging of Hg(II) by Chromophoric Ruthenium Complex-Assembled Nanophosphors. ACS Nano, 2011, 5, 8040-8048.	7.3	255
7	Upconversion luminescence imaging of cells and small animals. Nature Protocols, 2013, 8, 2033-2044.	5.5	253
8	Single upconversion nanoparticle imaging at sub-10 W cmâ^2 irradiance. Nature Photonics, 2018, 12, 548-553.	15.6	193
9	Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence /fluorescence /positron emission tomography imaging. Biomaterials, 2011, 32, 8243-8253.	5.7	146
10	Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo. Coordination Chemistry Reviews, 2014, 273-274, 100-110.	9.5	134
11	Ultraviolet light-mediated drug delivery: Principles, applications, and challenges. Journal of Controlled Release, 2015, 219, 31-42.	4.8	131
12	Efficient Triplet–Triplet Annihilation-Based Upconversion for Nanoparticle Phototargeting. Nano Letters, 2015, 15, 6332-6338.	4.5	101
13	Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15719-15724.	3.3	97
14	Highly Photostable Near-IR-Excitation Upconversion Nanocapsules Based on Triplet–Triplet Annihilation for in Vivo Bioimaging Application. ACS Applied Materials & Interfaces, 2018, 10, 9883-9888.	4.0	78
15	"Drawing―upconversion nanophosphors into water through host–guest interaction. Chemical Communications, 2010, 46, 5551.	2.2	74
16	Upconversion nanoparticles dramatically promote plant growth without toxicity. Nano Research, 2012, 5, 770-782.	5.8	68
17	Phototriggered Drug Delivery Using Inorganic Nanomaterials. Bioconjugate Chemistry, 2017, 28, 98-104.	1.8	54
18	Photoacousticâ€Enabled Selfâ€Guidance in Magneticâ€Hyperthermia Fe@Fe ₃ O ₄ Nanoparticles for Theranostics In Vivo. Advanced Healthcare Materials, 2018, 7, e1701201.	3.9	52

Qian Liu

#	Article	IF	CITATIONS
19	Enhanced Precision of Nanoparticle Phototargeting in Vivo at a Safe Irradiance. Nano Letters, 2016, 16, 4516-4520.	4.5	50
20	An NIRâ€II Photothermally Triggered "Oxygen Bomb―for Hypoxic Tumor Programmed Cascade Therapy. Advanced Materials, 2022, 34, .	11.1	48
21	Lanthanide-based nanocrystals as dual-modal probes for SPECT and X-ray CT imaging. Biomaterials, 2014, 35, 4699-4705.	5.7	45
22	Waste-free Soft Reactive Grinding Synthesis of High-Surface-Area Copper–Manganese Spinel Oxide Catalysts Highly Effective for Methanol Steam Reforming. Catalysis Letters, 2008, 121, 144-150.	1.4	43
23	A Supramolecular Shearâ€Thinning Antiâ€Inflammatory Steroid Hydrogel. Advanced Materials, 2016, 28, 6680-6686.	11.1	43
24	One-pot self-assembly of multifunctional mesoporous nanoprobes with magnetic nanoparticles and hydrophobic upconversion nanocrystals. Journal of Materials Chemistry, 2011, 21, 17615.	6.7	37
25	Adenosine Signaling Mediates SUMO-1 Modification of lκBα during Hypoxia and Reoxygenation. Journal of Biological Chemistry, 2009, 284, 13686-13695.	1.6	33
26	Hollow Silica Nanoparticles Penetrate the Peripheral Nerve and Enhance the Nerve Blockade from Tetrodotoxin. Nano Letters, 2018, 18, 32-37.	4.5	29
27	Lightâ€Responsive Luminescent Materials for Information Encryption Against Burst Force Attack. Small, 2021, 17, e2100377.	5.2	28
28	Photoswitchable upconversion nanophosphors for small animal imaging in vivo. RSC Advances, 2014, 4, 15613.	1.7	27
29	Polymer nanoparticles with an embedded phosphorescent osmium(ii) complex for cell imaging. Journal of Materials Chemistry, 2011, 21, 5360.	6.7	26
30	Fluorophore-photochrome co-embedded polymer nanoparticles for photoswitchable fluorescence bioimaging. Nano Research, 2012, 5, 494-503.	5.8	26
31	Enhanced Blue Afterglow through Molecular Fusion for Bioâ€applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
32	Significantly Enhanced Afterglow Brightness via Intramolecular Energy Transfer. , 2021, 3, 713-720.		20
33	Ytterbiumâ€Enriched Outmost Shell for Enhanced Upconversion Single Molecule Imaging and Interfacial Triplet Energy Transfer. Advanced Optical Materials, 2022, 10, .	3.6	7
34	RGDâ€Peptideâ€Modified NaLuF ₄ :Yb,Er Nanocrystals for Upconversionâ€Luminescenceâ€Targeted Tumorâ€Cell Imaging. European Journal of Inorganic Chemistry, 2017, 2017, 5169-5175.	1.0	6
35	Development of an Efficient Process for the Decomposition of the Borate Complexes Formed during the Large-Scale Synthesis of (<i>S</i>)-1,2,4-Butanetriol. Organic Process Research and Development, 2013, 17, 1540-1542.	1.3	4
36	A Formal Synthesis of Camptothecin via a Photocatalytic Decarboxylative Radical Addition. European Journal of Organic Chemistry, 2019, 2019, 6024-6027.	1.2	4