
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5983173/publications.pdf Version: 2024-02-01

RINC C SI

#	Article	IF	CITATIONS
1	Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles. Science of the Total Environment, 2017, 579, 814-824.	8.0	177
2	Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biology and Biochemistry, 2018, 117, 5-15.	8.8	124
3	Technical note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrology and Earth System Sciences, 2016, 20, 3183-3191.	4.9	111
4	Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada. Hydrological Processes, 2004, 18, 2835-2850.	2.6	103
5	Spatial Scaling Analyses of Soil Physical Properties: A Review of Spectral and Wavelet Methods. Vadose Zone Journal, 2008, 7, 547-562.	2.2	103
6	Development and Application of the Heat Pulse Method for Soil Physical Measurements. Reviews of Geophysics, 2018, 56, 567-620.	23.0	103
7	Soil water prediction based on its scale-specific control using multivariate empirical mode decomposition. Geoderma, 2013, 193-194, 180-188.	5.1	102
8	Scaling Relationships between Saturated Hydraulic Conductivity and Soil Physical Properties. Soil Science Society of America Journal, 2005, 69, 1691-1702.	2.2	100
9	Characterizing scale-dependent spatial relationships between soil properties using multifractal techniques. Geoderma, 2006, 134, 440-452.	5.1	97
10	Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Science of the Total Environment, 2017, 586, 827-835.	8.0	96
11	Water mining from the deep critical zone by apple trees growing on loess. Hydrological Processes, 2019, 33, 320-327.	2.6	96
12	A modified normalized model for predicting effective soil thermal conductivity. Acta Geotechnica, 2017, 12, 1281-1300.	5.7	94
13	Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes. European Journal of Soil Science, 2012, 63, 820-830.	3.9	92
14	Probability Distribution and Spatial Dependence of Nitrous Oxide Emission. Soil Science Society of America Journal, 2006, 70, 753-762.	2.2	88
15	ldentifying scale specific controls of soil water storage in a hummocky landscape using wavelet coherency. Geoderma, 2011, 165, 50-59.	5.1	87
16	Revealing the Controls of Soil Water Storage at Different Scales in a Hummocky Landscape. Soil Science Society of America Journal, 2011, 75, 1295-1306.	2.2	79
17	Deep soil water extraction by apple sequesters organic carbon via root biomass rather than altering soil organic carbon content. Science of the Total Environment, 2019, 670, 662-671.	8.0	76
18	Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Science of the Total Environment, 2021, 771, 144802.	8.0	76

#	Article	IF	CITATIONS
19	Tritium analysis shows apple trees may be transpiring water several decades old. Hydrological Processes, 2017, 31, 1196-1201.	2.6	72
20	Influence of textural layering on field capacity of coarse soils. Canadian Journal of Soil Science, 2011, 91, 133-147.	1.2	71
21	Wavelet coherency analysis to relate saturated hydraulic properties to soil physical properties. Water Resources Research, 2005, 41, .	4.2	68
22	Quantifying dual recharge mechanisms in deep unsaturated zone of Chinese Loess Plateau using stable isotopes. Geoderma, 2019, 337, 773-781.	5.1	68
23	Infiltration and drainage processes in multi-layered coarse soils. Canadian Journal of Soil Science, 2011, 91, 169-183.	1.2	66
24	Scales and locations of time stability of soil water storage in a hummocky landscape. Journal of Hydrology, 2011, 408, 100-112.	5.4	65
25	Soil freezing and thawing processes affected by the different landscapes in the middle reaches of Heihe River Basin, Gansu, China. Journal of Hydrology, 2014, 519, 1328-1338.	5.4	65
26	Rooting depth controls potential groundwater recharge on hillslopes. Journal of Hydrology, 2018, 564, 164-174.	5.4	65
27	Revealing the relative influence of soil and topographic properties on soil water content distribution at the watershed scale in two sites. Journal of Hydrology, 2014, 516, 107-118.	5.4	63
28	Deep rooted apple trees decrease groundwater recharge in the highland region of the Loess Plateau, China. Science of the Total Environment, 2018, 622-623, 584-593.	8.0	63
29	Determination of Hydraulic Properties in Sloping Landscapes from Tension and Doubleâ€Ring Infiltrometers. Vadose Zone Journal, 2004, 3, 964-970.	2.2	56
30	Estimating Saturated Hydraulic Conductivity Using Genetic Programming. Soil Science Society of America Journal, 2007, 71, 1676-1684.	2.2	56
31	Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China. Water (Switzerland), 2015, 7, 2382-2401.	2.7	55
32	Scaling Properties of Topographic Indices and Crop Yield: Multifractal and Joint Multifractal Approaches. Agronomy Journal, 2004, 96, 1082-1090.	1.8	54
33	Long-term vegetation restoration increases deep soil carbon storage in the Northern Loess Plateau. Scientific Reports, 2021, 11, 13758.	3.3	54
34	Scaleâ€Dependent Relationship between Wheat Yield and Topographic Indices. Soil Science Society of America Journal, 2004, 68, 577-587.	2.2	53
35	Temporally stable patterns but seasonal dependent controls of soil water content: Evidence from wavelet analyses. Hydrological Processes, 2017, 31, 3697-3707.	2.6	52
36	Dominant role of climate in determining spatio-temporal distribution of potential groundwater recharge at a regional scale. Journal of Hydrology, 2019, 578, 124042.	5.4	52

#	Article	IF	CITATIONS
37	Application of Continuous Wavelet Transform inÂExamining Soil Spatial Variation: AÂReview. Mathematical Geosciences, 2011, 43, 379-396.	2.4	50
38	Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences. Hydrology and Earth System Sciences, 2021, 25, 321-331.	4.9	50
39	Estimating Saturated Hydraulic Conductivity In Spatially Variable Fields Using Neural Network Ensembles. Soil Science Society of America Journal, 2006, 70, 1851-1859.	2.2	49
40	Determining Regional-Scale Groundwater Recharge with GRACE and GLDAS. Remote Sensing, 2019, 11, 154.	4.0	47
41	Room for improvement: A review and evaluation of 24 soil thermal conductivity parameterization schemes commonly used in land-surface, hydrological, and soil-vegetation-atmosphere transfer models. Earth-Science Reviews, 2020, 211, 103419.	9.1	47
42	Soil freezing–thawing characteristics and snowmelt infiltration in Cryalfs of Alberta, Canada. Geoderma Regional, 2015, 5, 198-208.	2.1	46
43	Multifractal detrended fluctuation analysis in examining scaling properties of the spatial patterns of soil water storage. Nonlinear Processes in Geophysics, 2012, 19, 227-238.	1.3	45
44	Elucidating controls of the variability of deep soil bulk density. Geoderma, 2019, 348, 146-157.	5.1	45
45	Thermal properties of sandy and peat soils under unfrozen and frozen conditions. Soil and Tillage Research, 2019, 189, 64-72.	5.6	44
46	Effect of residue incorporation on physical properties of the surface soil in the South Central Rift Valley of Ethiopia. Soil and Tillage Research, 2004, 77, 35-46.	5.6	43
47	Separating scale-specific soil spatial variability: A comparison of multi-resolution analysis and empirical mode decomposition. Geoderma, 2013, 209-210, 57-64.	5.1	43
48	Estimating Soil Hydraulic Properties During Constant Flux Infiltration Inverse Procedures. Soil Science Society of America Journal, 2000, 64, 439-449.	2.2	41
49	Evaluation of time stability indices for soil water storage upscaling. Journal of Hydrology, 2012, 475, 229-241.	5.4	41
50	Application of multivariate empirical mode decomposition for revealing scale-and season-specific time stability of soil water storage. Catena, 2014, 113, 377-385.	5.0	41
51	Distributed Temperature Sensing for Soil Physical Measurements and Its Similarity to Heat Pulse Method. Advances in Agronomy, 2018, 148, 173-230.	5.2	41
52	A new thermal conductivity model for sandy and peat soils. Agricultural and Forest Meteorology, 2019, 274, 95-105.	4.8	40
53	Can soil water measurements at a certain depth be used to estimate mean soil water content of a soil profile at a point or at a hillslope scale?. Journal of Hydrology, 2014, 516, 67-75.	5.4	38
54	Precipitation dominates the transpiration of both the economic forest (Malus pumila) and ecological forest (Robinia pseudoacacia) on the Loess Plateau after about 15 years of water depletion in deep soil. Agricultural and Forest Meteorology, 2021, 297, 108244.	4.8	38

#	Article	IF	CITATIONS
55	A review of time domain reflectometry (TDR) applications in porous media. Advances in Agronomy, 2021, 168, 83-155.	5.2	38
56	New Method for Determining Waterâ€Conducting Macro―and Mesoporosity from Tension Infiltrometer. Soil Science Society of America Journal, 2004, 68, 760-769.	2.2	37
57	Spatial variability of soil organic matter and nutrients in paddy fields at various scales in southeast China. Environmental Geology, 2008, 53, 1139-1147.	1.2	37
58	A generalized model for estimating effective soil thermal conductivity based on the Kasubuchi algorithm. Geoderma, 2019, 353, 227-242.	5.1	37
59	Uncertainties in tritium mass balance models for groundwater recharge estimation. Journal of Hydrology, 2019, 571, 150-158.	5.4	37
60	Soil ice content measurement using a heat pulse probe method. Canadian Journal of Soil Science, 2011, 91, 235-246.	1.2	36
61	Water availability and forest growth in coarse-textured soils. Canadian Journal of Soil Science, 2011, 91, 199-210.	1.2	36
62	Relationship between the severity, persistence of soil water repellency and the critical soil water content in water repellent soils. Geoderma, 2014, 221-222, 113-120.	5.1	36
63	Scale-Dependent Relationship between Wheat Yield and Topographic Indices. Soil Science Society of America Journal, 2004, 68, 577.	2.2	36
64	Unified Solution for Infiltration and Drainage with Hysteresis Theory and Field Test. Soil Science Society of America Journal, 2000, 64, 30-36.	2.2	35
65	Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau. Agricultural Water Management, 2018, 202, 99-112.	5.6	35
66	Detecting grassland spatial variation by a wavelet approach. International Journal of Remote Sensing, 2007, 28, 1527-1545.	2.9	33
67	Factors controlling soil water storage in the hummocky landscape of the Prairie Pothole Region of North America. Canadian Journal of Soil Science, 2012, 92, 649-663.	1.2	33
68	Evaluation of five composite dielectric mixing models for understanding relationships between effective permittivity and unfrozen water content. Cold Regions Science and Technology, 2016, 130, 33-42.	3.5	32
69	Using the double-exponential water retention equation to determine how soil pore-size distribution is linked to soil texture. Soil and Tillage Research, 2016, 156, 119-130.	5.6	32
70	A novel method for identifying hydrophobicity on fungal surfaces. Mycological Research, 2009, 113, 1046-1052.	2.5	31
71	Flow and Transport in Layered Soils. Canadian Journal of Soil Science, 2011, 91, 127-132.	1.2	31
72	Time, location, and scale dependence of soil nitrous oxide emissions, soil water, and temperature using wavelets, cross-wavelets, and wavelet coherency analysis. Journal of Geophysical Research, 2007, 112, .	3.3	30

#	Article	IF	CITATIONS
73	Wavelet Spectra of Nitrous Oxide Emission from Hummocky Terrain during Spring Snowmelt. Soil Science Society of America Journal, 2006, 70, 1110-1120.	2.2	29
74	Reconstructed Precipitation Tritium Leads to Overestimated Groundwater Recharge. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9858-9867.	3.3	28
75	Studying mixed grassland ecosystems II: optimum pixel size. Canadian Journal of Remote Sensing, 2006, 32, 108-115.	2.4	27
76	The differences of water balance components of Caragana korshinkii grown in homogeneous and layered soils in the desert–Loess Plateau transition zone. Journal of Arid Environments, 2013, 98, 10-19.	2.4	27
77	Multi-layer diffusion model and error analysis applied to chamber-based gas fluxes measurements. Agricultural and Forest Meteorology, 2009, 149, 169-178.	4.8	26
78	Calibration of a non-invasive cosmic-ray probe for wide area snow water equivalent measurement. Cryosphere, 2016, 10, 1181-1190.	3.9	26
79	Modelling of soil solid thermal conductivity. International Communications in Heat and Mass Transfer, 2020, 116, 104602.	5.6	26
80	Determining deep root water uptake patterns with tree age in the Chinese loess area. Agricultural Water Management, 2021, 249, 106810.	5.6	26
81	Analytical modeling of one-dimensional diffusion in layered systems with position-dependent diffusion coefficients. Advances in Water Resources, 2008, 31, 251-268.	3.8	25
82	Effects of initial soil water content and saturated hydraulic conductivity variability on small watershed runoff simulation using LISEM. Hydrological Sciences Journal, 2015, 60, 1137-1154.	2.6	25
83	Water Movement and Finger Flow Characterization in Homogeneous Waterâ€Repellent Soils. Vadose Zone Journal, 2018, 17, 1-12.	2.2	25
84	A review and evaluation of thermal conductivity models of saturated soils. Archives of Agronomy and Soil Science, 2021, 67, 974-986.	2.6	25
85	Spatial relationship between δ ¹⁵ N and elevation in agricultural landscapes. Nonlinear Processes in Geophysics, 2008, 15, 397-407.	1.3	24
86	The impact of soil moisture availability on forest growth indices for variably layered coarseâ€ŧextured soils. Ecohydrology, 2013, 6, 214-227.	2.4	24
87	Modeling of Coupled Water and Heat Transfer in Freezing and Thawing Soils, Inner Mongolia. Water (Switzerland), 2016, 8, 424.	2.7	24
88	Environmental controls on the spatial variability of soil water dynamics in a small watershed. Journal of Hydrology, 2017, 551, 47-55.	5.4	24
89	Time and frequency domain reflectometry for the measurement of tree stem water content: A review, evaluation, and future perspectives. Agricultural and Forest Meteorology, 2021, 306, 108442.	4.8	24
90	Evaluation of 14 frozen soil thermal conductivity models with observations and SHAW model simulations. Geoderma, 2021, 403, 115207.	5.1	24

#	Article	IF	CITATIONS
91	Topographically Controlled Yield Response of Canola to Nitrogen Fertilizer. Soil Science Society of America Journal, 2001, 65, 1838-1845.	2.2	23
92	Soil Properties, Yield, and Landscape Relationships in South-Central Saskatchewan Canada. Journal of Plant Nutrition, 2008, 31, 539-556.	1.9	23
93	Depth Persistence of the Spatial Pattern of Soil Water Storage in a Hummocky Landscape. Soil Science Society of America Journal, 2011, 75, 1099-1109.	2.2	23
94	Catchment-scale variability of absolute versus temporal anomaly soil moisture: Time-invariant part not always plays the leading role. Journal of Hydrology, 2015, 529, 1669-1678.	5.4	23
95	Measurement of Hydraulic Properties During Constant Flux Infiltration Field Average. Soil Science Society of America Journal, 1999, 63, 793-799.	2.2	22
96	Analytical Solution of Heat Pulse Method in a Parallelepiped Sample Space with Inclined Needles. Soil Science Society of America Journal, 2008, 72, 1208-1216.	2.2	22
97	Impact of tension infiltrometer disc size on measured soil water repellency index. Canadian Journal of Soil Science, 2011, 91, 77-81.	1.2	22
98	Single- and Dual-Probe Heat Pulse Probe for Determining Thermal Properties of Dry Soils. Soil Science Society of America Journal, 2011, 75, 787-794.	2.2	22
99	The effects of probe misalignment on sap flux density measurements and in situ probe spacing correction methods. Agricultural and Forest Meteorology, 2017, 232, 176-185.	4.8	22
100	Phenology determines water use strategies of three economic tree species in the semi-arid Loess Plateau of China. Agricultural and Forest Meteorology, 2022, 312, 108716.	4.8	22
101	Measuring Hydraulic Properties Using a Line Source II. Field Test. Soil Science Society of America Journal, 2000, 64, 1563-1569.	2.2	21
102	Determining Longâ€Term (Decadal) Deep Drainage Rate Using Multiple Tracers. Journal of Environmental Quality, 2007, 36, 1686-1694.	2.0	21
103	Dualâ€probe heat pulse method for snow density and thermal properties measurement. Geophysical Research Letters, 2008, 35, .	4.0	21
104	Characterizing Scale―and Locationâ€Dependent Correlation of Water Retention Parameters with Soil Physical Properties Using Wavelet Techniques. Journal of Environmental Quality, 2008, 37, 2284-2292.	2.0	21
105	System dynamics modeling of infiltration and drainage in layered coarse soil. Canadian Journal of Soil Science, 2011, 91, 185-197.	1.2	20
106	Combined Effects of Mulch and Tillage on Soil Hydrothermal Conditions under Drip Irrigation in Hetao Irrigation District, China. Water (Switzerland), 2016, 8, 504.	2.7	20
107	Scale- and location-specific relationships between soil available micronutrients and environmental factors in the Fen River basin on the Chinese Loess Plateau. Catena, 2016, 147, 764-772.	5.0	20
108	Soil wetting state and preferential transport of <i>Escherichia coli</i> in clay soils. Canadian Journal of Soil Science, 2007, 87, 61-72.	1.2	19

#	Article	IF	CITATIONS
109	Assessment of alcohol percentage test for fungal surface hydrophobicity measurement. Letters in Applied Microbiology, 2010, 50, 295-300.	2.2	19
110	Probe Body and Thermal Contact Conductivity Affect Error of Heat Pulse Method Based on Infinite Line Source Approximation. Soil Science Society of America Journal, 2012, 76, 370-374.	2.2	19
111	Spatial variability of soil electrical conductivity in a small watershed on the Loess Plateau of China. Geoderma, 2014, 230-231, 212-220.	5.1	19
112	A general in situ probe spacing correction method for dual probe heat pulse sensor. Agricultural and Forest Meteorology, 2016, 226-227, 50-56.	4.8	19
113	Stable isotopes of deep soil water retain long-term evaporation loss on China's Loess Plateau. Science of the Total Environment, 2021, 784, 147153.	8.0	19
114	Spatial relationship between soil hydraulic and soil physical properties in a farm field. Canadian Journal of Soil Science, 2009, 89, 473-488.	1.2	18
115	Errors Analysis Of Heat Pulse Probe Methods: Experiments and Simulations. Soil Science Society of America Journal, 2010, 74, 797-803.	2.2	18
116	Evidence of High Microbial Abundance and Spatial Dependency in Three Arctic Soil Ecosystems. Soil Science Society of America Journal, 2011, 75, 2227-2232.	2.2	18
117	Evaluation of a self-correcting dual probe heat pulse sensor. Agricultural and Forest Meteorology, 2015, 200, 203-208.	4.8	18
118	Singleâ€Probe Heat Pulse Method for Soil Water Content Determination: Comparison of Methods. Vadose Zone Journal, 2016, 15, 1-13.	2.2	18
119	Effects of soil managements on surface runoff and soil water content in jujube orchard under simulated rainfalls. Catena, 2015, 135, 193-201.	5.0	17
120	Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis. Hydrology and Earth System Sciences, 2016, 20, 571-587.	4.9	17
121	Temporal variability of water footprint for cereal production and its controls in Saskatchewan, Canada. Science of the Total Environment, 2019, 660, 1306-1316.	8.0	17
122	Measuring Hydraulic Properties Using a Line Source I. Analytical Expressions. Soil Science Society of America Journal, 2000, 64, 1554-1562.	2.2	16
123	Waveletâ€based multifractal analysis of field scale variability in soil water retention. Water Resources Research, 2007, 43, .	4.2	16
124	Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a Î ³ -sterilized wettable and repellent soil. Fungal Biology, 2012, 116, 1212-1218.	2.5	16
125	Hydrological processes and eco-hydrological effects of farmland–forest–desert transition zone in the middle reaches of Heihe River Basin, Gansu, China. Journal of Hydrology, 2015, 529, 1690-1700.	5.4	16
126	Incorporation of Preâ€Treated Straw Improves Soil Aggregate Stability and Increases Crop Productivity. Agronomy Journal, 2017, 109, 2253-2265.	1.8	16

#	Article	IF	CITATIONS
127	Deficit and Recovery of Deep Soil Water Following a Full Cycle of Afforestation and Deforestation of Apple Trees on the Loess Plateau, China. Water (Switzerland), 2020, 12, 989.	2.7	16
128	Characterizing scale―and locationâ€specific variation in nonâ€linear soil systems using the wavelet transform. European Journal of Soil Science, 2013, 64, 706-715.	3.9	15
129	Separating Scale-Specific Spatial Variability in Two Dimensions using Bi-Dimensional Empirical Mode Decomposition. Soil Science Society of America Journal, 2013, 77, 1991-1995.	2.2	15
130	Curvelet transform to study scale-dependent anisotropic soil spatial variation. Geoderma, 2014, 213, 589-599.	5.1	15
131	Monitoring soil water content at a heterogeneous oil sand reclamation site using a cosmic-ray soil moisture probe. Journal of Hydrology, 2016, 543, 510-522.	5.4	15
132	Scaling analysis of soil water retention parameters and physical properties of a Chinese agricultural soil. Soil Research, 2009, 47, 821.	1.1	14
133	Soil Spatial Dependence in Three Arctic Ecosystems. Soil Science Society of America Journal, 2011, 75, 591-594.	2.2	14
134	Mean soil water content estimation using measurements from time stable locations of adjacent or distant areas. Journal of Hydrology, 2013, 497, 234-243.	5.4	14
135	Extreme Precipitation Years and Their Occurrence Frequency Regulate Longâ€Term Groundwater Recharge and Transit Time. Vadose Zone Journal, 2018, 17, 1-9.	2.2	14
136	Stand age and precipitation affect deep soil water depletion of economical forest in the loess area. Agricultural and Forest Meteorology, 2021, 310, 108636.	4.8	14
137	Growing deep roots has opposing impacts on the transpiration of apple trees planted in subhumid loess region. Agricultural Water Management, 2021, 258, 107207.	5.6	14
138	Parameter estimation using the falling head infiltration model: Simulation and field experiment. Water Resources Research, 2005, 41, .	4.2	13
139	Spatial variability of soil available Zn and Cu in paddy rice fields of China. Environmental Geology, 2008, 55, 1569-1576.	1.2	13
140	Joint Multifractal Analysis of Scaling Relationships Between Soil Water-Retention Parameters and Soil Texture. Pedosphere, 2011, 21, 373-379.	4.0	13
141	Water Footprint for Pulse, Cereal, and Oilseed Crops in Saskatchewan, Canada. Water (Switzerland), 2018, 10, 1609.	2.7	13
142	Simulation of Water Movement in Layered Waterâ€Repellent Soils using HYDRUSâ€1D. Soil Science Society of America Journal, 2018, 82, 1101-1112.	2.2	13
143	Chloride tracer of the loess unsaturated zone under sub-humid region: A potential proxy recording high-resolution hydroclimate. Science of the Total Environment, 2020, 700, 134465.	8.0	13
144	Rainfall intensity affects runoff responses in a semiâ€∎rid catchment. Hydrological Processes, 2021, 35, e14100.	2.6	13

#	Article	IF	CITATIONS
145	Modelling dry soil thermal conductivity. Soil and Tillage Research, 2021, 213, 105093.	5.6	13
146	Identifying effects of local and nonlocal factors of soil water storage using cyclical correlation analysis. Hydrological Processes, 2012, 26, 3669-3677.	2.6	12
147	Determining Soil Hydraulic Properties from Tension Infiltrometer Measurements. Soil Science Society of America Journal, 2005, 69, 1922-1930.	2.2	11
148	Unified Multilayer Diffusion Model and Application to Diffusion Experiment in Porous Media by Method of Chambers. Environmental Science & Technology, 2009, 43, 2412-2416.	10.0	11
149	New Method for Determining Water-Conducting Macro- and Mesoporosity from Tension Infiltrometer. Soil Science Society of America Journal, 2004, 68, 760.	2.2	11
150	Upslope length improves spatial estimation of soil organic carbon content. Canadian Journal of Soil Science, 2007, 87, 291-300.	1.2	10
151	Correction of cryogenic vacuum extraction biases and potential effects on soil water isotopes application. Journal of Hydrology, 2021, 603, 127011.	5.4	10
152	Groundwater recharge mechanisms on the Loess Plateau of China: New evidence for the significance of village ponds. Agricultural Water Management, 2021, 257, 107148.	5.6	10
153	Measuring Solid Percentage of Oil Sands Mature Fine Tailings Using the Dual Probe Heat Pulse Method. Journal of Environmental Quality, 2015, 44, 293-298.	2.0	9
154	Effects of row-spacing and stubble height on soil water content and water use by canola and wheat in the dry prairie region of Canada. Agricultural Water Management, 2015, 153, 77-85.	5.6	9
155	Visâ€Near IR Reflectance Spectroscopy for Soil Organic Carbon Content Measurement in the Canadian Prairies. Clean - Soil, Air, Water, 2015, 43, 1215-1223.	1.1	9
156	Calibration method affects the measured δ ² H and δ ¹⁸ O in soil water by direct H ₂ O _{liquid} –H ₂ O _{vapour} equilibration with laser spectroscopy. Hydrological Processes, 2020, 34, 506-516.	2.6	9
157	Water recovery rate and isotopic signature of cryogenic vacuum extracted spiked soil water following ovenâ€drying at different temperatures. Hydrological Processes, 2021, 35, e14248.	2.6	9
158	Groundwater recharge in hillslopes on the Chinese Loess Plateau. Journal of Hydrology: Regional Studies, 2021, 36, 100840.	2.4	9
159	Deep soil water storage and drainage following conversion of deep rooted to shallow rooted vegetation. Agricultural Water Management, 2022, 261, 107359.	5.6	9
160	Representative sampling size for strip sampling and number of required samples for random sampling for soil nutrients in direct seeded fields. Precision Agriculture, 2015, 16, 385-404.	6.0	8
161	Fractal behavior of soil water storage at multiple depths. Nonlinear Processes in Geophysics, 2016, 23, 269-284.	1.3	8
162	Effects of petroleum hydrocarbon concentration and bulk density on the hydraulic properties of lean oil sand overburden. Canadian Journal of Soil Science, 2016, 96, 435-446.	1.2	8

#	Article	IF	CITATIONS
163	Rooting Depth and Extreme Precipitation Regulate Groundwater Recharge in the Thick Unsaturated Zone: A Case Study. Water (Switzerland), 2019, 11, 1232.	2.7	8
164	Quantify Piston and Preferential Water Flow in Deep Soil Using Clâ^' and Soil Water Profiles in Deforested Apple Orchards on the Loess Plateau, China. Water (Switzerland), 2019, 11, 2183.	2.7	8
165	Coiled Time Domain Reflectometry Matric Potential Sensor. Soil Science Society of America Journal, 2008, 72, 1422-1424.	2.2	7
166	An innovative brilliant blue FCF method for fluorescent staining of fungi and bacteria. Biotechnic and Histochemistry, 2011, 86, 280-287.	1.3	7
167	Thermal Transport of Graphene Sheets with Fractal Defects. Molecules, 2018, 23, 3294.	3.8	7
168	A New Solution for Water Storage to a Fixed Depth for Constant Flux Infiltration. Soil Science Society of America Journal, 2000, 64, 24-29.	2.2	6
169	Spatial and Statistical Similarities of Local Soil Water Fluxes. Soil Science Society of America Journal, 2002, 66, 753-759.	2.2	6
170	The effect of long-term fertilization on soil water storage and water deficit in the Black Soil Zone in northeast China. Canadian Journal of Soil Science, 2012, 92, 439-448.	1.2	6
171	Impact of Textural Layering on Water Retention Within Drained Sand Profiles. Soil Science, 2013, 178, 496-504.	0.9	6
172	Predicting bulk density in deep unsaturated soils based on multiple scale decomposition. Geoderma, 2021, 385, 114859.	5.1	6
173	Effect of combining strawâ€derived materials and wood ash on alkaline soil carbon content and the microbial community. European Journal of Soil Science, 2021, 72, 1863-1878.	3.9	6
174	Spatial and seasonal variability of phosphorus risk indexes in cultivated organic soils. Canadian Journal of Soil Science, 2011, 91, 291-302.	1.2	5
175	Density-dependent calibration of multisensor capacitance probes in coarse soil. Canadian Journal of Soil Science, 2015, 95, 331-336.	1.2	5
176	Effects of Citrate on the Rates and Mechanisms of Phosphate Adsorption and Desorption on a Calcareous Soil. Soil Science Society of America Journal, 2019, 83, 332-338.	2.2	5
177	Technical note: Evaporating water is different from bulk soil water in <i>l´</i> ² H and <i>l´</i> ¹⁸ O and has implications for evaporation calculation. Hydrology and Earth System Sciences. 2021. 25. 5399-5413.	4.9	5
178	Exposure to weathering reduces the water repellency of aggregated oil sand material from subsoils of the Athabasca region. Canadian Journal of Soil Science, 2018, 98, 264-276.	1.2	4
179	Measurement of Local Soil Water Flux during Field Solute Transport Experiments. Soil Science Society of America Journal, 2003, 67, 730.	2.2	4
180	Measurement of Local Soil Water Flux during Field Solute Transport Experiments. Soil Science Society of America Journal, 2003, 67, 730-736.	2.2	3

IF # ARTICLE CITATIONS Extracting soil water storage pattern using a self-organizing map. Geoderma, 2012, 177-178, 18-26. 5.1 Measurement of low sap flux density in plants using the single needle heat pulse probe. Agricultural 182 4.8 3 and Forest Meteorology, 2021, 310, 108656. ä,åŒé™æ°´æjä»¶ä,‹ç§ʿå°"æ²æ²™åœ°å°å¶é"¦é,jå"¿å'Œç›è'¿çš"æ°´å^†å^©ç""动怕 Chinese Journal of Plant Ecology,62017, 41, 1262 183 An in situ real time probe spacing correction method for multi-needle heat pulse sap flow sensors. 184 4.8 3 Agricultural and Forest Meteorology, 2022, 314, 108776. Field-scale N fertilizer recommendations: The spatial covariance problem. Canadian Journal of Soil 1.2 Science, 2002, 82, 59-64. Improving water storage of reclamation soil covers by fractionation of coarse-textured soil. 186 1.2 2 Canadian Journal of Soil Science, 2014, 94, 489-501. Detecting nonlinearity in the spatial series of nitrous oxide emission by delay vector variance. 5.1 Geoderma, 2018, 317, 23-31. Signal processing for in situ detection of effective heat pulse probe spacing radius as the basis of a self-calibrating heat pulse probe. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 188 1.6 2 293-315. Characteristics of soil water distribution and evaluation of recharge rate under different grazing 189 0.6 history in the Xilin Gol Steppe. Chinese Journal of Plant Ecology, 2018, 42, 1033-1042. Assessing spatial distribution and joint uncertainty of TPH-fractions: Indicator kriging and sequential 190 1.2 1 indicator simulation. Canadian Journal of Soil Science, 2007, 87, 551-563. Scaling of Soil Physical Properties. Encyclopedia of Earth Sciences Series, 2011, , 725-729. 0.1 Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5. Geoscientific Model Development, 2022, 15, 192 3.6 1 3405-3416. Accuracy Assessment of Sequential Indicator Simulation in Three-dimensional Prediction of Soil Texture. Soil Science, 2012, 177, 355-359. Interstitial hydrocarbons reduce the infiltration rates of coarse-textured reclamation materials 194 5.00 from the Athabasca oil sands. Catena, 2019, 173, 207-216.

BING C SI