
Chengbin Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5982855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D printed miniature atomic emission detector coupling with gas chromatography: A sensitive and cost-effective strategy for the determination of volatile methylsiloxanes in municipal sewage. Analytica Chimica Acta, 2022, 1191, 339288.	5.4	2
2	Catalysts in photochemical vapor generation. , 2022, , 265-281.		0
3	Direct coupling of liquid–liquid extraction with 3D-printed microplasma optical emission spectrometer for speciation analysis of mercury in fish oil. Microchemical Journal, 2022, 179, 107569.	4.5	7
4	Excessive consumption mechanism of hydrazine in the reaction with ReO ₄ ^{â^'} : Re species evolution and ReO ₂ · <i>n</i> H ₂ O-catalyzed decomposition. Inorganic Chemistry Frontiers, 2022, 9, 3532-3541.	6.0	1
5	Application of solid-phase microextraction in atomic spectrometry. Advances in Sample Preparation, 2022, , 100033.	3.0	5
6	A microplasma optical emission spectrometry pen for point-of-care diagnosis of child blood lead. Journal of Hazardous Materials, 2022, 439, 129607.	12.4	5
7	Microplasma-induced vapor generation for rapid, sample preparation-free screening of mercury in fruits and vegetables. Analyst, The, 2021, 146, 3852-3857.	3.5	7
8	Detection and Quantification of Tightly Bound Zn ²⁺ in Blood Serum Using a Photocaged Chelator and a DNAzyme Fluorescent Sensor. Analytical Chemistry, 2021, 93, 5856-5861.	6.5	19
9	In-site and solvent-free exfoliation of porous graphene oxide from pencil lead fiber for solid-phase microextraction of cadmium ion before GF-AAS determination. Mikrochimica Acta, 2021, 188, 172.	5.0	16
10	MnFe2O4 micromotors enhanced field digestion and solid phase extraction for on-site determination of arsenic in rice and water. Analytica Chimica Acta, 2021, 1156, 338354.	5.4	14
11	Headspace Solid-Phase Microextraction Following Chemical Vapor Generation for Ultrasensitive, Matrix Effect-Free Detection of Nitrite by Microplasma Optical Emission Spectrometry. Analytical Chemistry, 2021, 93, 6972-6979.	6.5	21
12	Methanol-Enhanced Liquid Electrode Discharge Microplasma-Induced Vapor Generation of Hg, Cd, and Zn: The Possible Mechanism and Its Application. Analytical Chemistry, 2021, 93, 8257-8264.	6.5	22
13	Self-photo-oxidation for extending visible light absorption of carbon dots and oxidase-like activity. Carbon, 2021, 182, 537-544.	10.3	25
14	Miniature microplasma carbon optical emission spectrometry for detection of dissolved oxygen in water. Microchemical Journal, 2021, 171, 106862.	4.5	6
15	In Situ Fabrication of Nanoceria with Oxidase-like Activity at Neutral pH: Mechanism and Boosted Bio-Nanozyme Cascades. ACS Applied Materials & Interfaces, 2021, 13, 50236-50245.	8.0	21
16	Three-Dimensional Printed Dual-Mode Chemical Vapor Generation Point Discharge Optical Emission Spectrometer for Field Speciation Analyses of Mercury and Inorganic Selenium. Analytical Chemistry, 2021, 93, 14923-14928.	6.5	27
17	One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution. Chinese Chemical Letters, 2020, 31, 1540-1544.	9.0	29
18	Determination of the isotopic composition of lutetium using MC-ICPMS. Analytical and Bioanalytical Chemistry, 2020, 412, 6257-6263.	3.7	5

#	Article	IF	CITATIONS
19	Can low-temperature point discharge Be used as atomic emission source for sensitive determination of cyclic volatile methylsiloxanes?. Analytica Chimica Acta, 2020, 1124, 121-128.	5.4	2
20	Growth of Carbonaceous Nanoparticles on Steel Fiber from Candle Flame for the Long-Term Preservation of Ultratrace Mercury by Solid-Phase Microextraction. Analytical Chemistry, 2020, 92, 9583-9590.	6.5	18
21	Reduction of mercury(II) by electrons contained in carbon dots: An environmentally friendly cold vapor generation for mercury analysis. Chinese Chemical Letters, 2020, 31, 2678-2682.	9.0	14
22	Simple Universal Strategy for Quantification of Carboxyl Groups on Carbon Nanomaterials: Carbon Dioxide Vapor Generation Coupled to Microplasma for Optical Emission Spectrometric Detection. Analytical Chemistry, 2020, 92, 3528-3534.	6.5	15
23	Trapping and preconcentration of volatile organic sulfur compounds in water samples by portable and battery-powered trapping device prior to gas chromatography-sulfur chemiluminescence determination. Journal of Chromatography A, 2020, 1619, 460947.	3.7	3
24	Thiol inhibition of Hg cold vapor generation in SnCl2/NaBH4 system: A homogeneous bioassay for H2O2/glucose and butyrylcholinesterase/pesticide sensing by atomic spectrometry. Analytica Chimica Acta, 2020, 1111, 8-15.	5.4	7
25	Analysis of silver-associated proteins in pathogen via combination of native SDS-PACE, fluorescent staining, and inductively coupled plasma mass spectrometry. Journal of Chromatography A, 2019, 1607, 460393.	3.7	5
26	Enzymeâ€Mediated Endogenous and Bioorthogonal Control of a DNAzyme Fluorescent Sensor for Imaging Metal Ions in Living Cells. Angewandte Chemie, 2019, 131, 17217-17223.	2.0	12
27	Integration of Flow Injection Capillary Liquid Electrode Discharge Optical Emission Spectrometry and Microplasma-Induced Vapor Generation: A System for Detection of Ultratrace Hg and Cd in a Single Drop of Human Whole Blood. Analytical Chemistry, 2019, 91, 2701-2709.	6.5	34
28	Enzymeâ€Mediated Endogenous and Bioorthogonal Control of a DNAzyme Fluorescent Sensor for Imaging Metal Ions in Living Cells. Angewandte Chemie - International Edition, 2019, 58, 17061-17067.	13.8	78
29	Disposable Paper-Based Analytical Device for Visual Speciation Analysis of Ag(I) and Silver Nanoparticles (AgNPs). Analytical Chemistry, 2019, 91, 3359-3366.	6.5	49
30	Headspace Solid-Phase Microextraction Coupled to Miniaturized Microplasma Optical Emission Spectrometry for Detection of Mercury and Lead. Analytical Chemistry, 2018, 90, 3683-3691.	6.5	69
31	Copper Ion Assisted Photochemical Vapor Generation of Chlorine for Its Sensitive Determination by Sector Field Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2018, 90, 4112-4118.	6.5	72
32	Cost-effective and environmentally friendly synthesis of 3D Ni ₂ P from scrap nickel for highly efficient hydrogen evolution in both acidic and alkaline media. Journal of Materials Chemistry A, 2018, 6, 4088-4094.	10.3	46
33	Low-Temperature and Atmospheric Pressure Sample Digestion Using Dielectric Barrier Discharge. Analytical Chemistry, 2018, 90, 1547-1553.	6.5	19
34	Ultrarapid in Situ Synthesis of Cu ₂ S Nanosheet Arrays on Copper Foam with Room-Temperature-Active Iodine Plasma for Efficient and Cost-Effective Oxygen Evolution. ACS Catalysis, 2018, 8, 3859-3864.	11.2	129
35	Facile electrochemical synthesis of nano iron porous coordination polymer using scrap iron for simultaneous and cost-effective removal of organic and inorganic arsenic. Chinese Chemical Letters, 2018, 29, 456-460.	9.0	22
36	On-line chemical vapor generation for determination of total sulfur dioxide in wine samples using an atomic fluorescence spectrometer. Journal of Analytical Atomic Spectrometry, 2018, 33, 161-167.	3.0	10

#	Article	IF	CITATIONS
37	Point Discharge Optical Emission Spectrometer as a Gas Chromatography (GC) Detector for Speciation Analysis of Mercury in Human Hair. Analytical Chemistry, 2018, 90, 11996-12003.	6.5	47
38	Single-Drop Solution Electrode Discharge-Induced Cold Vapor Generation Coupling to Matrix Solid-Phase Dispersion: A Robust Approach for Sensitive Quantification of Total Mercury Distribution in Fish. Analytical Chemistry, 2017, 89, 2093-2100.	6.5	38
39	Fe ₃ N o ₂ N Nanowires Array: A Nonâ€Nobleâ€Metal Bifunctional Catalyst Electrode for Highâ€Performance Glucose Oxidation and H ₂ O ₂ Reduction toward Nonâ€Enzymatic Sensing Applications. Chemistry - A European Journal, 2017, 23, 5214-5218.	3.3	117
40	Pump- and Valve-Free Flow Injection Capillary Liquid Electrode Discharge Optical Emission Spectrometry Coupled to a Droplet Array Platform. Analytical Chemistry, 2017, 89, 703-710.	6.5	30
41	Co ₃ O ₄ Nanowire Arrays toward Superior Water Oxidation Electrocatalysis in Alkaline Media by Surface Amorphization. Chemistry - A European Journal, 2017, 23, 15601-15606.	3.3	29
42	Continuous and Inexpensive Monitoring of Nonpurgeable Organic Carbon by Coupling High-Efficiency Photo-oxidation Vapor Generation with Miniaturized Point-Discharge Optical Emission Spectrometry. Environmental Science & Technology, 2017, 51, 9109-9117.	10.0	31
43	A novel capillary microplasma analytical system: interface-free coupling of glow discharge optical emission spectrometry to capillary electrophoresis. Journal of Analytical Atomic Spectrometry, 2016, 31, 1423-1429.	3.0	16
44	Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone. Talanta, 2016, 155, 87-93.	5.5	15
45	Hydride Generation for Headspace Solid-Phase Extraction with CdTe Quantum Dots Immobilized on Paper for Sensitive Visual Detection of Selenium. Analytical Chemistry, 2016, 88, 789-795.	6.5	70
46	Strand Displacement-Induced Enzyme-Free Amplification for Label-Free and Separation-Free Ultrasensitive Atomic Fluorescence Spectrometric Detection of Nucleic Acids and Proteins. Analytical Chemistry, 2016, 88, 12386-12392.	6.5	40
47	Hydride generation-point discharge microplasma-optical emission spectrometry for the determination of trace As, Bi, Sb and Sn. Journal of Analytical Atomic Spectrometry, 2016, 31, 2427-2433.	3.0	44
48	Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. Journal of Materials Chemistry A, 2016, 4, 10114-10117.	10.3	103
49	Integrating photochemical vapor generation with photo-oxidation trapping for effective mercury removal from polluted water and its on-line monitoring. Microchemical Journal, 2016, 129, 98-103.	4.5	14
50	Label-Free and Separation-Free Atomic Fluorescence Spectrometry-Based Bioassay: Sensitive Determination of Single-Strand DNA, Protein, and Double-Strand DNA. Analytical Chemistry, 2016, 88, 2065-2071.	6.5	45
51	UV-assisted Fenton digestion of rice for the determination of trace cadmium by hydride generation atomic fluorescence spectrometry. Analyst, The, 2016, 141, 1512-1518.	3.5	20
52	Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry. Environmental Science & Technology, 2016, 50, 2468-2476.	10.0	72
53	Application of flow injection–green chemical vapor generation–atomic fluorescence spectrometry to ultrasensitive mercury speciation analysis of water and biological samples. Microchemical Journal, 2016, 127, 62-67.	4.5	54
54	Chemical vapor generation from an ionic liquid using a solid reductant: determination of Hg, As and Sb by atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2016, 31, 415-422.	3.0	21

#	Article	IF	CITATIONS
55	In Situ Synthesis of Porous Carbons by Using Roomâ€Temperature, Atmosphericâ€Pressure Dielectric Barrier Discharge Plasma as Highâ€Performance Adsorbents for Solidâ€Phase Microextraction. Chemistry - A European Journal, 2015, 21, 13618-13624.	3.3	14
56	Photochemical vapor generation and in situ preconcentration for determination of mercury by graphite furnace atomic absorption spectrometry. Analytical Methods, 2015, 7, 3015-3021.	2.7	30
57	Room Temperature Cation Exchange Reaction in Nanocrystals for Ultrasensitive Speciation Analysis of Silver Ions and Silver Nanoparticles. Analytical Chemistry, 2015, 87, 6584-6591.	6.5	63
58	Metal organic frameworks CAU-1 as new photocatalyst for photochemical vapour generation for analytical atomic spectrometry. Journal of Analytical Atomic Spectrometry, 2015, 30, 339-342.	3.0	36
59	Online solid sampling platform using multi-wall carbon nanotube assisted matrix solid phase dispersion for mercury speciation in fish by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2015, 30, 882-887.	3.0	34
60	Application of Preconcentration and Separation Techniques in Atomic Fluorescence Spectrometry. Applied Spectroscopy Reviews, 2015, 50, 678-705.	6.7	16
61	Direct Determination of Trace Antimony in Natural Waters by Photochemical Vapor Generation ICPMS: Method Optimization and Comparison of Quantitation Strategies. Analytical Chemistry, 2015, 87, 7996-8004.	6.5	47
62	Integration of hydride generation and photochemical vapor generation for multi-element analysis of traditional Chinese medicine by ICP-OES. Microchemical Journal, 2015, 123, 164-169.	4.5	31
63	Dielectric barrier discharge-assisted one-pot synthesis of carbon quantum dots as fluorescent probes for selective and sensitive detection of hydrogen peroxide and glucose. Talanta, 2015, 142, 51-56.	5.5	49
64	Three Birds with One Fe ₃ O ₄ Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish. Analytical Chemistry, 2015, 87, 5866-5871.	6.5	44
65	Determination of Hg, Fe, Ni, and Co by Miniaturized Optical Emission Spectrometry Integrated with Flow Injection Photochemical Vapor Generation and Point Discharge. Analytical Chemistry, 2015, 87, 10712-10718.	6.5	71
66	Photochemical vapor generation for removing nickel impurities from carbon nanotubes and its real-time monitoring by atomic fluorescence spectrometry. Microchemical Journal, 2014, 117, 83-88.	4.5	20
67	Single Drop Solution Electrode Glow Discharge for Plasma Assisted-Chemical Vapor Generation: Sensitive Detection of Zinc and Cadmium in Limited Amounts of Samples. Analytical Chemistry, 2014, 86, 12093-12099.	6.5	56
68	Preconcentration and in-situ photoreduction of trace selenium using TiO2 nanoparticles, followed by its determination by slurry photochemical vapor generation atomic fluorescence spectrometry. Mikrochimica Acta, 2014, 181, 197-204.	5.0	31
69	Flow injection hydride generation for on-atomizer trapping: Highly sensitive determination of cadmium by tungsten coil atomic absorption spectrometry. Microchemical Journal, 2014, 112, 7-12.	4.5	24
70	Organic Solvent-Free Cloud Point Extraction-like Methodology Using Aggregation of Graphene Oxide. Analytical Chemistry, 2014, 86, 758-765.	6.5	51
71	Recyclable Decoration of Amine-Functionalized Magnetic Nanoparticles with Ni ²⁺ for Determination of Histidine by Photochemical Vapor Generation Atomic Spectrometry. Analytical Chemistry, 2014, 86, 842-848.	6.5	46
72	In-atomizer atom trapping on gold nanoparticles for sensitive determination of mercury by flow injection cold vapor generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2014, 29, 367-373.	3.0	15

#	Article	IF	CITATIONS
73	Dual-mode chemical vapor generation for simultaneous determination of hydride-forming and non-hydride-forming elements by atomic fluorescence spectrometry. Analyst, The, 2014, 139, 2538-2544.	3.5	14
74	Analytical Method for the Determination of Trace Toxic Elements in Milk Based on Combining Fe ₃ O ₄ Nanoparticles Accelerated UV Fenton-like Digestion and Solid Phase Extraction. Journal of Agricultural and Food Chemistry, 2014, 62, 8586-8593.	5.2	25
75	Dielectric Barrier Discharge Carbon Atomic Emission Spectrometer: Universal GC Detector for Volatile Carbon-Containing Compounds. Analytical Chemistry, 2014, 86, 936-942.	6.5	58
76	Electrothermal Vaporization for Universal Liquid Sample Introduction to Dielectric Barrier Discharge Microplasma for Portable Atomic Emission Spectrometry. Analytical Chemistry, 2014, 86, 5220-5224.	6.5	83
77	Miniaturized Dielectric Barrier Discharge Carbon Atomic Emission Spectrometry with Online Microwave-Assisted Oxidation for Determination of Total Organic Carbon. Analytical Chemistry, 2014, 86, 6214-6219.	6.5	51
78	Improved hollow fiber supported liquid–liquid–liquid membrane microextraction for speciation of inorganic and organic mercury by capillary electrophoresis. Analytical Methods, 2013, 5, 1185.	2.7	24
79	Solution-free, in situ preparation of nano/micro CuO/ZnO in dielectric barrier discharge for sensitive cataluminescence sensing of acetic acid. Analyst, The, 2013, 138, 3687.	3.5	28
80	UV-induced atomization of gaseous mercury hydrides for atomic fluorescence spectrometric detection of inorganic and organic mercury after high performance liquid chromatographic separation. Journal of Analytical Atomic Spectrometry, 2013, 28, 510.	3.0	25
81	Advanced oxidation using Fe3O4 magnetic nanoparticles and its application in mercury speciation analysis by high performance liquid chromatography-cold vapor generation atomic fluorescence spectrometry. Analyst, The, 2013, 138, 3494.	3.5	63
82	Online multichannel ultrasonic extraction for high throughput determination of arsenic in soil by sequential injection slurry hydride generation atomic fluorescence spectrometry. Analytical Methods, 2013, 5, 3142.	2.7	6
83	Influence of Speciation on the Response from Selenium to UV-Photochemical Vapor Generation. Analytical Sciences, 2012, 28, 807-811.	1.6	22
84	Improved hydride generation-atomic fluorescence spectrometry for determination of trace lead: minimization of blank from potassium ferricyanide. Analytical Methods, 2012, 4, 4058.	2.7	13
85	Recent Advance of Hydride Generation–Analytical Atomic Spectrometry: Part II—Analysis of Real Samples. Applied Spectroscopy Reviews, 2012, 47, 495-517.	6.7	74
86	Microwave-enhanced cold vapor generation for speciation analysis of mercury by atomic fluorescence spectrometry. Talanta, 2012, 94, 146-151.	5.5	41
87	Nanomaterials in analytical atomic spectrometry. TrAC - Trends in Analytical Chemistry, 2012, 39, 38-59.	11.4	79
88	UV light-emitting-diode photochemical mercury vapor generation for atomic fluorescence spectrometry. Analyst, The, 2012, 137, 686-690.	3.5	40
89	Recent Advance of Hydride Generation–Analytical Atomic Spectrometry: Part l—Technique Development. Applied Spectroscopy Reviews, 2012, 47, 382-413.	6.7	97
90	Molecularly imprinted dispersive solid-phase microextraction for determination of sulfamethazine by capillary electrophoresis. Mikrochimica Acta, 2012, 178, 293-299.	5.0	40

#	Article	IF	CITATIONS
91	Ultrasensitive determination of selenium by atomic fluorescence spectrometry using nano-TiO ₂ pre-concentration and in situhydride generation. Journal of Analytical Atomic Spectrometry, 2012, 27, 270-275.	3.0	33
92	A compact electrothermal-flame tandem atomizer for highly sensitive atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 1780.	3.0	15
93	Size-controllable synthesis of spherical ZnO nanoparticles: Size- and concentration-dependent resonant light scattering. Microchemical Journal, 2012, 100, 61-65.	4.5	22
94	Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchemical Journal, 2012, 103, 1-14.	4.5	215
95	Vapor generation in dielectric barrier discharge for sensitive detection of mercury by inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26, 1204.	3.0	70
96	Dielectric Barrier Discharge Molecular Emission Spectrometer as Multichannel GC Detector for Halohydrocarbons. Analytical Chemistry, 2011, 83, 5050-5055.	6.5	54
97	Dielectric Barrier Discharge in Analytical Spectrometry. Applied Spectroscopy Reviews, 2011, 46, 368-387.	6.7	66
98	On-line preconcentration and in situ photochemical vapor generation in coiled reactor for speciation analysis of mercury and methylmercury by atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26, 126-132.	3.0	56
99	Determination of ultratrace nitrogen in pure argon gas by dielectric barrier discharge-molecular emission spectrometry. Microchemical Journal, 2011, 99, 114-117.	4.5	21
100	Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction. Journal of Hazardous Materials, 2010, 183, 549-553.	12.4	36
101	UV photochemical vapor generation–atomic fluorescence spectrometric determination of conventional hydride generation elements. Microchemical Journal, 2010, 95, 32-37.	4.5	94
102	Photochemical vapor generation of carbonyl for ultrasensitive atomic fluorescence spectrometric determination of cobalt. Microchemical Journal, 2010, 96, 277-282.	4.5	42
103	UV Photochemical Vapor Generation Sample Introduction for Determination of Ni, Fe, and Se in Biological Tissue by Isotope Dilution ICPMS. Analytical Chemistry, 2010, 82, 3899-3904.	6.5	89
104	UV-induced carbonyl generation with formic acid for sensitive determination of nickel by atomic fluorescence spectrometry. Talanta, 2010, 80, 1239-1244.	5.5	36
105	Versatile Thin-Film Reactor for Photochemical Vapor Generation. Analytical Chemistry, 2010, 82, 3086-3093.	6.5	78
106	Thin film hydride generation: determination of ultra-trace copper by flow injection in situ hydride trapping graphite furnace AAS. Journal of Analytical Atomic Spectrometry, 2010, 25, 1159.	3.0	32
107	High-Yield UV-Photochemical Vapor Generation of Iron for Sample Introduction with Inductively Coupled Plasma Optical Emission Spectrometry. Analytical Chemistry, 2010, 82, 2996-3001.	6.5	77
108	Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry. Journal of Analytical Atomic Spectrometry, 2010, 25, 1217.	3.0	156

#	Article	IF	CITATIONS
109	UV photochemical vapor generation and in situ preconcentration for determination of ultra-trace nickel by flow injection graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2009, 24, 1452.	3.0	65
110	Temperature and nano-TiO2 controlled photochemical vapor generation for inorganic selenium speciation analysis by AFS or ICP-MS without chromatographic separation. Journal of Analytical Atomic Spectrometry, 2008, 23, 514.	3.0	94
111	Saturated Solution of PbSO4as Standard Stock Solution and Its Applications in Analytical Spectroscopy: Screening Analysis of Lead in Natural Water andUsnea longissima. Spectroscopy Letters, 2007, 40, 537-545.	1.0	4
112	An ethanol sensor based on cataluminescence on ZnO nanoparticles. Talanta, 2007, 72, 1593-1597.	5.5	78
113	Chemical Vapor Generation for Determination of Mercury by Inductively Coupled Plasma Mass Spectrometry. Applied Spectroscopy Reviews, 2007, 42, 79-102.	6.7	32
114	Photo-induced cold vapor generation with low molecular weight alcohol, aldehyde, or carboxylic acid for atomic fluorescence spectrometric determination of mercury. Analytical and Bioanalytical Chemistry, 2007, 388, 825-830.	3.7	74
115	Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry. Analytical and Bioanalytical Chemistry, 2007, 388, 769-774.	3.7	136
116	Sample matrix-assisted photo-induced chemical vapor generation: a reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples. Journal of Analytical Atomic Spectrometry, 2006, 21, 82-85.	3.0	74
117	UV Irradiation Controlled Cold Vapor Generation Using SnCl ₂ as Reductant for Mercury Speciation. Analytical Sciences, 2006, 22, 1361-1365.	1.6	29
118	Compact flame atomic absorption spectrometer based on handheld CCD for simultaneous determination of calcium and magnesium in water. Journal of Analytical Atomic Spectrometry, 2005, 20, 60.	3.0	7
119	Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water. Journal of Analytical Atomic Spectrometry, 2005, 20, 746.	3.0	185