Xin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5982824/publications.pdf

Version: 2024-02-01

471371 477173 44 986 17 29 citations h-index g-index papers 44 44 44 547 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chemistry, 2020, 321, 126503.	4.2	84
2	Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging. Computers and Electronics in Agriculture, 2019, 160, 153-159.	3.7	81
3	Natural variations in the MYB transcription factor <i>MYB31</i> determine the evolution of extremely pungent peppers. New Phytologist, 2019, 223, 922-938.	3.5	72
4	In-Depth Transcriptome Analysis of the Red Swamp Crayfish Procambarus clarkii. PLoS ONE, 2014, 9, e110548.	1.1	62
5	A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves. Chemometrics and Intelligent Laboratory Systems, 2020, 200, 103996.	1.8	51
6	Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 212, 215-221.	2.0	46
7	Visualization research of moisture content in leaf lettuce leaves based on WTâ€PLSR and hyperspectral imaging technology. Journal of Food Process Engineering, 2018, 41, e12647.	1.5	38
8	Nondestructive detection for egg freshness grade based on hyperspectral imaging technology. Journal of Food Process Engineering, 2020, 43, e13422.	1.5	36
9	Non-destructive detection of egg qualities based on hyperspectral imaging. Journal of Food Engineering, 2022, 325, 111024.	2.7	36
10	Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120460.	2.0	33
11	Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images. International Journal of Remote Sensing, 2020, 41, 2263-2276.	1.3	32
12	<scp>D</scp> iscrimination of pesticide residues in lettuce based on chemical molecular structure coupled with wavelet transform and near infrared hyperspectra. Journal of Food Process Engineering, 2017, 40, e12509.	1.5	29
13	Research on moldy tea feature classification based on WKNN algorithm and NIR hyperspectral imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 378-383.	2.0	28
14	Identification of <scp><i>Lycium barbarum</i></scp> varieties based on hyperspectral imaging technique and competitive adaptive reweighted sampling <scp>â€</scp> whale optimization algorithm <scp>â€</scp> support vector machine. Journal of Food Process Engineering, 2021, 44, .	1.5	21
15	Identification of moisture content in tobacco plant leaves using outlier sample eliminating algorithms and hyperspectral data. Biochemical and Biophysical Research Communications, 2016, 471, 226-232.	1.0	20
16	Visualizing distribution of pesticide residues in mulberry leaves using NIR hyperspectral imaging. Journal of Food Process Engineering, 2017, 40, e12510.	1.5	20
17	Research on nondestructive identification of grape varieties based on EEMDâ€DWT and hyperspectral image. Journal of Food Science, 2021, 86, 2011-2023.	1.5	20
18	Spectral classification of lettuce cadmium stress based on information fusion and VISSAâ€GOA VM algorithm. Journal of Food Process Engineering, 2019, 42, e13085.	1.5	18

#	Article	IF	CITATIONS
19	Nondestructive determination of the total mold colony count in green tea by hyperspectral imaging technology. Journal of Food Process Engineering, 2020, 43, e13570.	1.5	16
20	Classification of tea varieties based on fluorescence hyperspectral image technology and ABCâ€SVM algorithm. Journal of Food Processing and Preservation, 2021, 45, e15241.	0.9	16
21	Quantitative detection of moisture content in rice seeds based on hyperspectral technique. Journal of Food Process Engineering, 2018, 41, e12916.	1.5	15
22	Application of deep brief network in transmission spectroscopy detection of pesticide residues in lettuce leaves. Journal of Food Process Engineering, 2019, 42, e13005.	1.5	15
23	Detection for lead pollution level of lettuce leaves based on deep belief network combined with hyperspectral image technology. Journal of Food Safety, 2021, 41, .	1.1	15
24	Classification detection of saccharin jujube based on hyperspectral imaging technology. Journal of Food Processing and Preservation, 2020, 44, e14591.	0.9	14
25	Nondestructive detection for Panax notoginseng powder grades based on hyperspectral imaging technology combined with CARSâ€PCA and MPAâ€LSSVM. Journal of Food Process Engineering, 2021, 44, e13718.	1.5	14
26	Participation of calmodulin in ovarian maturation induced by eyestalk ablation in red swamp crayfish <i>Procambarus clarkii</i> . Aquaculture Research, 2013, 44, 1625-1631.	0.9	13
27	Classification of heavy metal Cd stress in lettuce leaves based on WPCA algorithm and fluorescence hyperspectral technology. Infrared Physics and Technology, 2021, 119, 103936.	1.3	13
28	A comparative analysis of hybrid SVM and LSâ€SVM classification algorithms to identify dried wolfberry fruits quality based on hyperspectral imaging technology. Journal of Food Processing and Preservation, 2022, 46, .	0.9	11
29	Nondestructive detection of total soluble solids in grapes using VMDâ€RC and hyperspectral imaging. Journal of Food Science, 2022, 87, 326-338.	1.5	11
30	Nondestructive detection for egg freshness based on hyperspectral imaging technology combined with harris hawks optimization support vector regression. Journal of Food Safety, 2021, 41, e12888.	1.1	10
31	Nondestructive detection of lead content in oilseed rape leaves based on <scp>MRFâ€HHOâ€SVR</scp> and hyperspectral technology. Journal of Food Process Engineering, 2021, 44, e13793.	1.5	10
32	Research on apple origin classification based on variable iterative space shrinkage approach with stepwise regression <scp>â€"</scp> support vector machine algorithm and visibleâ€near infrared hyperspectral imaging. Journal of Food Process Engineering, 2020, 43, e13432.	1.5	10
33	Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121641.	2.0	10
34	Calcium–calmodulin dependent protein kinase I from Macrobrachium nipponense: cDNA cloning and involvement in molting. Gene, 2014, 538, 235-243.	1.0	9
35	Identification of tea white star disease and anthrax based on hyperspectral image information. Journal of Food Process Engineering, 2021, 44, .	1.5	9
36	Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT–BCC–SVM algorithm. Modern Physics Letters B, 2017, 31, 1740082.	1.0	8

#	Article	IF	CITATIONS
37	A method of information fusion for identification of rice seed varieties based on hyperspectral imaging technology. Journal of Food Process Engineering, 2021, 44, e13797.	1.5	7
38	TLR1 in Nile tilapia: The conserved receptor cannot interact with MyD88 and TIRAP but can activate NF-κB in vitro. Developmental and Comparative Immunology, 2022, 127, 104300.	1.0	7
39	Visualization of heavy metal cadmium in lettuce leaves based on wavelet support vector machine regression model and visibleâ€near infrared hyperspectral imaging. Journal of Food Process Engineering, 2021, 44, e13897.	1.5	6
40	DDX43 recruits TRIF or IPS-1 as an adaptor and activates the IFN- \hat{I}^2 pathway in Nile tilapia (Oreochromis) Tj ETQq0	000 rgBT	/Qverlock 1
41	Study on pesticide residues classification of lettuce leaves based on polarization spectroscopy. Journal of Food Process Engineering, 2018, 41, e12903.	1.5	5
42	Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage. Foods, 2022, 11, 2024.	1.9	5
43	Detection of soluble solid content in apples based on hyperspectral technology combined with deep learning algorithm. Journal of Food Processing and Preservation, 0, , .	0.9	3
44	Identification of living and non-living watermelon seeds based on Hyperspectral Imaging Technology. , 2021, , .		1