Hai-Feng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5982664/publications.pdf

Version: 2024-02-01

218381 253896 2,149 84 26 43 citations h-index g-index papers 86 86 86 2146 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ASD: a comprehensive database of allosteric proteins and modulators. Nucleic Acids Research, 2011, 39, D663-D669.	6.5	157
2	The IDP-Specific Force Field <i>ff14IDPSFF</i> Improves the Conformer Sampling of Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling, 2017, 57, 1166-1178.	2.5	157
3	New Force Field on Modeling Intrinsically Disordered Proteins. Chemical Biology and Drug Design, 2014, 84, 253-269.	1.5	110
4	Binding Induced Folding in p53â^MDM2 Complex. Journal of the American Chemical Society, 2007, 129, 2930-2937.	6.6	107
5	Screening and Identifying a Novel ssDNA Aptamer against Alpha-fetoprotein Using CE-SELEX. Scientific Reports, 2015, 5, 15552.	1.6	83
6	Test and Evaluation of <i>ff99IDPs</i> Force Field for Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling, 2015, 55, 1021-1029.	2.5	68
7	<i>ff14IDPs</i> force field improving the conformation sampling of intrinsically disordered proteins. Chemical Biology and Drug Design, 2017, 89, 5-15.	1.5	67
8	Recent Force Field Strategies for Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling, 2021, 61, 1037-1047.	2.5	67
9	Intrinsically disordered proteinâ€specific force field <scp>CHARMM</scp> 36 <scp>IDPSFF</scp> . Chemical Biology and Drug Design, 2018, 92, 1722-1735.	1.5	62
10	Directed evolution of an $\hat{l}\pm 1,3$ -fucosyltransferase using a single-cell ultrahigh-throughput screening method. Science Advances, 2019, 5, eaaw8451.	4.7	58
11	Comparison and Evaluation of Force Fields for Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling, 2020, 60, 4912-4923.	2.5	55
12	Environment-Specific Force Field for Intrinsically Disordered and Ordered Proteins. Journal of Chemical Information and Modeling, 2020, 60, 2257-2267.	2.5	55
13	Induced fit or conformational selection for RNA/U1A folding. Rna, 2010, 16, 1053-1061.	1.6	46
14	Molecular Dynamics Simulation of Phosphorylated KID Post-Translational Modification. PLoS ONE, 2009, 4, e6516.	1.1	44
15	Well-Balanced Force Field <i>ff</i> 03 <i>CMAP</i> for Folded and Disordered Proteins. Journal of Chemical Theory and Computation, 2019, 15, 6769-6780.	2.3	43
16	Mechanism of Coupled Folding and Binding in the siRNA-PAZ Complex. Journal of Chemical Theory and Computation, 2008, 4, 1360-1368.	2.3	41
17	Residue-Specific Force Field Improving the Sample of Intrinsically Disordered Proteins and Folded Proteins. Journal of Chemical Information and Modeling, 2019, 59, 4793-4805.	2.5	39
18	The Landscape of Protein Tyrosine Phosphatase (Shp2) and Cancer. Current Pharmaceutical Design, 2019, 24, 3767-3777.	0.9	38

#	Article	IF	CITATIONS
19	Extensive tests and evaluation of the CHARMM36IDPSFF force field for intrinsically disordered proteins and folded proteins. Physical Chemistry Chemical Physics, 2019, 21, 21918-21931.	1.3	37
20	Gain-of-Function SHP2 E76Q Mutant Rescuing Autoinhibition Mechanism Associated with Juvenile Myelomonocytic Leukemia. Journal of Chemical Information and Modeling, 2019, 59, 3229-3239.	2.5	37
21	Conformational Selection and Induced Fit in Specific Antibody and Antigen Recognition: SPE7 as a Case Study. Journal of Physical Chemistry B, 2013, 117, 4912-4923.	1.2	36
22	<i>In Silico</i> Log <i>P</i> Prediction for a Large Data Set with Support Vector Machines, Radial Basis Neural Networks and Multiple Linear Regression. Chemical Biology and Drug Design, 2009, 74, 142-147.	1.5	33
23	Synergistic Allosteric Mechanism of Fructose-1,6-bisphosphate and Serine for Pyruvate Kinase M2 via Dynamics Fluctuation Network Analysis. Journal of Chemical Information and Modeling, 2016, 56, 1184-1192.	2.5	33
24	Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression. Analytica Chimica Acta, 2008, 609, 24-36.	2.6	32
25	Conformational selection or induced fit for Brinker and DNA recognition. Physical Chemistry Chemical Physics, 2011, 13, 1407-1412.	1.3	31
26	Induced fit for mRNA/TIS11d complex. Journal of Chemical Physics, 2009, 131, 115103.	1.2	28
27	Exploring the Pyrazinamide Drug Resistance Mechanism of Clinical Mutants T370P and W403G in Ribosomal Protein S1 of <i>Mycobacterium tuberculosis</i> Journal of Chemical Information and Modeling, 2019, 59, 1584-1597.	2.5	26
28	Decoding allosteric communication pathways in protein lysine acetyltransferase. International Journal of Biological Macromolecules, 2020, 149, 70-80.	3.6	26
29	Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions. ACS Chemical Biology, 2017, 12, 1188-1193.	1.6	25
30	Dynamics Correlation Network for Allosteric Switching of PreQ1 Riboswitch. Scientific Reports, 2016, 6, 31005.	1.6	24
31	Aggregation mechanism investigation of the GIFQINS cross- \hat{l}^2 amyloid fibril. Computational Biology and Chemistry, 2009, 33, 41-45.	1.1	22
32	Molecular dynamics simulations of amyloid fibrils: an & amp;lt;italic& amp;gt;in silico& amp;lt;/italic& amp;gt; approach. Acta Biochimica Et Biophysica Sinica, 2013, 45, 503-508.	0.9	22
33	Mechanism of zinc ejection by disulfiram in nonstructural protein 5A. Physical Chemistry Chemical Physics, 2021, 23, 12204-12215.	1.3	22
34	Insight into the stability of crossâ€Î² amyloid fibril from molecular dynamics simulation. Biopolymers, 2010, 93, 578-586.	1.2	18
35	Allosteric mechanism of cyclopropylindolobenzazepine inhibitors for HCV NS5B RdRp via dynamic correlation network analysis. Molecular BioSystems, 2016, 12, 3280-3293.	2.9	18
36	Transcriptome-wide subtyping of pediatric and adult T cell acute lymphoblastic leukemia in an international study of 707 cases. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120787119.	3.3	18

#	Article	IF	Citations
37	Computational Study of the Binding Mode of Epidermal Growth Factor Receptor Kinase Inhibitors. Chemical Biology and Drug Design, 2008, 71, 434-446.	1.5	17
38	Conformation dynamics of the intrinsically disordered protein c-Myb with the ff99IDPs force field. RSC Advances, 2017, 7, 29713-29721.	1.7	17
39	RNA-Specific Force Field Optimization with CMAP and Reweighting. Journal of Chemical Information and Modeling, 2022, 62, 372-385.	2.5	17
40	Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis. Scientific Reports, 2016, 6, 24587.	1.6	15
41	The Dose-Dependent Effects of Vascular Risk Factors on Dynamic Compensatory Neural Processes in Mild Cognitive Impairment. Frontiers in Aging Neuroscience, 2018, 10, 131.	1.7	15
42	Computational study of histamine H3-receptor antagonist with support vector machines and three dimension quantitative structure activity relationship methods. Analytica Chimica Acta, 2008, 624, 203-209.	2.6	14
43	An Inverse U-Shaped Curve of Resting-State Networks in Individuals at High Risk of Alzheimer's Disease. Journal of Clinical Psychiatry, 2018, 79, 17m11583.	1.1	14
44	Kink turn sRNA folding upon L7Ae binding using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2013, 15, 18510.	1.3	13
45	Immunoproteasome inhibitor DPLG3 attenuates experimental colitis by restraining NF-κB activation. Biochemical Pharmacology, 2020, 177, 113964.	2.0	13
46	Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426. PLoS ONE, 2015, 10, e0115130.	1.1	13
47	Recognition Mechanism between Lac Repressor and DNA with Correlation Network Analysis. Journal of Physical Chemistry B, 2015, 119, 2844-2856.	1.2	12
48	Allosteric Autoinhibition Pathway in Transcription Factor ERG: Dynamics Network and Mutant Experimental Evaluations. Journal of Chemical Information and Modeling, 2017, 57, 1153-1165.	2.5	12
49	Dynamical important residue network (DIRN): network inference via conformational change. Bioinformatics, 2019, 35, 4664-4670.	1.8	12
50	On-Demand Regulation of Dual Thermosensitive Protein Hydrogels. ACS Macro Letters, 2021, 10, 395-400.	2.3	12
51	Global Conformational Selection and Local Induced Fit for the Recognition between Intrinsic Disordered p53 and CBP. PLoS ONE, 2013, 8, e59627.	1.1	12
52	Balanced Solvent Model for Intrinsically Disordered and Ordered Proteins. Journal of Chemical Information and Modeling, 2021, 61, 5141-5151.	2.5	11
53	Molecular dynamics simulations exploring drug resistance in HIV-1 proteases. Science Bulletin, 2010, 55, 2677-2683.	1.7	10
54	Biosynthesis of Coenzyme Q in the Phytopathogen <i>Xanthomonas campestris</i> via a Yeast-Like Pathway. Molecular Plant-Microbe Interactions, 2019, 32, 217-226.	1.4	10

#	Article	IF	Citations
55	Positive cooperative regulation of double binding sites for human acetylcholinesterase. Chemical Biology and Drug Design, 2017, 89, 694-704.	1.5	9
56	Coenzyme Q biosynthesis in the biopesticide Shenqinmycin-producing Pseudomonas aeruginosa strain M18. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1025-1038.	1.4	9
57	Quinoline-Pyrazole Scaffold as a Novel Ligand of Galectin-3 and Suppressor of TREM2 Signaling. ACS Medicinal Chemistry Letters, 2020, 11, 1759-1765.	1.3	9
58	The trimeric Hef-associated nuclease HAN is a $3\hat{a}\in^2\hat{a}^{\dagger}$, $5\hat{a}\in^2$ exonuclease and is probably involved in DNA repair. Nucleic Acids Research, 2018, 46, 9027-9043.	6.5	7
59	Dynein axonemal intermediate chain 2 plays a role in gametogenesis by activation of Stat3. Journal of Cellular and Molecular Medicine, 2019, 23, 417-425.	1.6	7
60	Algorithmâ€based coevolution network identification reveals key functional residues of the α/β hydrolase subfamilies. FASEB Journal, 2020, 34, 1983-1995.	0.2	7
61	Extensive evaluation of environment-specific force field for ordered and disordered proteins. Physical Chemistry Chemical Physics, 2021, 23, 12127-12136.	1.3	7
62	Allosteric Modulation of Intrinsically Disordered Proteins. Advances in Experimental Medicine and Biology, 2019, 1163, 335-357.	0.8	7
63	Allosteric pathways in tetrahydrofolate sensing riboswitch with dynamics correlation network. Molecular BioSystems, 2017, 13, 156-164.	2.9	6
64	Allosteric mechanism of quinoline inhibitors for <scp>HIV RT</scp> â€essociated <scp>RN</scp> ase with <scp>MD</scp> simulation and dynamics fluctuation network. Chemical Biology and Drug Design, 2018, 91, 805-816.	1.5	6
65	Secondary structures transition of tau protein with intrinsically disordered proteins specific force field. Chemical Biology and Drug Design, 2019, 93, 242-253.	1.5	6
66	Selectivity Mechanism of <scp>ATP</scp> â€Competitive Inhibitors for <scp>PKB</scp> and <scp>PKA</scp> . Chemical Biology and Drug Design, 2015, 86, 9-18.	1.5	5
67	Crystal Structure of StnA for the Biosynthesis of Antitumor Drug Streptonigrin Reveals a Unique Substrate Binding Mode. Scientific Reports, 2017, 7, 40254.	1.6	5
68	Order-disorder transition of intrinsically disordered kinase inducible transactivation domain of CREB. Journal of Chemical Physics, 2018, 148, 225101.	1.2	5
69	Early aggregation mechanism of $\hat{A}^216\hat{a}^22$ revealed by Markov state models. International Journal of Biological Macromolecules, 2022, 204, 606-616.	3.6	5
70	Insight into the Metabolism Rate of Quinone Analogues from Molecular Dynamics Simulation and 3Dâ€QSMR Methods. Chemical Biology and Drug Design, 2007, 70, 290-301.	1.5	4
71	Binding Induced Intrinsically Disordered Protein Folding with Molecular Dynamics Simulation. Advances in Experimental Medicine and Biology, 2015, 827, 111-121.	0.8	3
72	Synergistic regulation mechanism of iperoxo and LY2119620 for muscarinic acetylcholine M2 receptor. RSC Advances, 2018, 8, 13067-13074.	1.7	3

#	Article	IF	CITATIONS
73	Conformational selection and induced fit for RNA polymerase and RNA/DNA hybrid backtracked recognition. Frontiers in Molecular Biosciences, 2015, 2, 61.	1.6	2
74	Inhibitory mechanism of 5-bromo-3-indoleacetic acid for non-structural-3 helicase hepatitis C virus with dynamics correlation network analysis. Computational Biology and Chemistry, 2018, 77, 167-177.	1.1	2
75	Characterization of protein interaction surface on fatty acyl selectivity of starter condensation domain in lipopeptide biosynthesis. Applied Microbiology and Biotechnology, 2020, 104, 653-660.	1.7	2
76	Vaccine targeting TNF epitope 1–14 do not suppress host defense against Mycobacterium bovis Bacillus Calmette-Guérin infection. International Journal of Biological Macromolecules, 2021, 169, 371-383.	3.6	2
77	NIPS, a 3D network-integrated predictor of deleterious protein SAPs, and its application in cancer prognosis. Scientific Reports, 2018, 8, 6021.	1.6	1
78	Allosteric mechanism of an oximinoâ€piperidinoâ€piperidine antagonist for the CCR5 chemokine receptor. Chemical Biology and Drug Design, 2020, 95, 113-123.	1.5	1
79	Disaggregation mechanism of prion amyloid for tweezer inhibitor. International Journal of Biological Macromolecules, 2021, 176, 510-519.	3.6	1
80	Functional Parameters of Prestin Are Not Correlated With the Best Hearing Frequency. Frontiers in Cell and Developmental Biology, 2021, 9, 638530.	1.8	1
81	Catalytic mechanism of butane anaerobic oxidation for alkylâ€coenzyme M reductase. Chemical Biology and Drug Design, 2021, 98, 701-712.	1.5	1
82	Coupling between ATP hydrolysis and protein conformational change in maltose transporter. Proteins: Structure, Function and Bioinformatics, 2017, 85, 207-220.	1.5	0
83	Highly Conserved C-Terminal Region of Indian Hedgehog N-Fragment Contributes to Its Auto-Processing and Multimer Formation. Biomolecules, 2021, 11, 792.	1.8	0
84	Mechanism Underlying the Bypass of Apurinic/Pyrimidinic Site Analogs by Sulfolobus acidocaldarius DNA Polymerase IV. International Journal of Molecular Sciences, 2022, 23, 2729.	1.8	0