List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5982653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International Journal of Biological Macromolecules, 2014, 64, 353-367.	3.6	620
2	Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces, 2011, 85, 145-152.	2.5	529
3	Development of Zein Nanoparticles Coated with Carboxymethyl Chitosan for Encapsulation and Controlled Release of Vitamin D3. Journal of Agricultural and Food Chemistry, 2012, 60, 836-843.	2.4	477
4	Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. Journal of Agricultural and Food Chemistry, 2012, 60, 7644-7651.	2.4	312
5	Nanoparticles Synthesized from Soy Protein: Preparation, Characterization, and Application for Nutraceutical Encapsulation. Journal of Agricultural and Food Chemistry, 2012, 60, 2712-2720.	2.4	290
6	Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydrate Polymers, 2015, 122, 221-229.	5.1	264
7	Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chemistry, 2014, 142, 269-275.	4.2	251
8	Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chemistry, 2013, 141, 524-532.	4.2	231
9	Zeinâ€based micro―and nanoâ€particles for drug and nutrient delivery: A review. Journal of Applied Polymer Science, 2014, 131, .	1.3	227
10	Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohydrate Polymers, 2010, 82, 942-951.	5.1	197
11	Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chemistry, 2013, 139, 224-230.	4.2	195
12	Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nature Communications, 2017, 8, 1482.	5.8	193
13	Effect of acid and base treatments on structural, rheological, and antioxidant properties of α-zein. Food Chemistry, 2011, 124, 210-220.	4.2	177
14	Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials, 2018, 8, 830.	1.9	173
15	Biopolymer-Based Nanotechnology Approaches To Deliver Bioactive Compounds for Food Applications: A Perspective on the Past, Present, and Future. Journal of Agricultural and Food Chemistry, 2020, 68, 12993-13000.	2.4	132
16	Cellular Uptake and Transport of Zein Nanoparticles: Effects of Sodium Caseinate. Journal of Agricultural and Food Chemistry, 2013, 61, 7621-7629.	2.4	131
17	Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules, 2019, 24, 4242.	1.7	122
18	Understanding the Dissolution of α-Zein in Aqueous Ethanol and Acetic Acid Solutions. Journal of Physical Chemistry B, 2012, 116, 12057-12064.	1.2	103

#	Article	IF	CITATIONS
19	The formation of zein-chitosan complex coacervated particles: Relationship to encapsulation and controlled release properties. International Journal of Biological Macromolecules, 2018, 116, 1232-1239.	3.6	94
20	Antimicrobial Nanoparticles Incorporated in Edible Coatings and Films for the Preservation of Fruits and Vegetables. Molecules, 2019, 24, 1695.	1.7	94
21	Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae, 2020, 263, 109135.	1.7	92
22	Dynamic Effects of Free Chlorine Concentration, Organic Load, and Exposure Time on the Inactivation of Salmonella, Escherichia coli O157:H7, and Non-O157 Shiga Toxin–Producing E. coli. Journal of Food Protection, 2013, 76, 386-393.	0.8	91
23	Development of carboxymethyl chitosan hydrogel beads in alcohol-aqueous binary solvent for nutrient delivery applications. Food Hydrocolloids, 2013, 31, 332-339.	5.6	85
24	Beta-lactoglobulin-based encapsulating systems as emerging bioavailability enhancers for nutraceuticals: a review. RSC Advances, 2015, 5, 35138-35154.	1.7	85
25	Enhanced Inactivation of Salmonella and Pseudomonas Biofilms on Stainless Steel by Use of T-128, a Fresh-Produce Washing Aid, in Chlorinated Wash Solutions. Applied and Environmental Microbiology, 2012, 78, 6789-6798.	1.4	82
26	Development and Application of Nanoparticles Synthesized with Folic Acid Conjugated Soy Protein. Journal of Agricultural and Food Chemistry, 2013, 61, 2556-2564.	2.4	82
27	Gypenosides Reduced the Risk of Overweight and Insulin Resistance in C57BL/6J Mice through Modulating Adipose Thermogenesis and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2017, 65, 9237-9246.	2.4	81
28	Silver Nanocluster-Embedded Zein Films as Antimicrobial Coating Materials for Food Packaging. ACS Applied Materials & Interfaces, 2017, 9, 35297-35304.	4.0	80
29	Combined effects of sodium chlorite dip treatment and chitosan coatings on the quality of fresh-cut d'Anjou pears. Postharvest Biology and Technology, 2011, 62, 319-326.	2.9	78
30	Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT - Food Science and Technology, 2019, 101, 731-737.	2.5	77
31	Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. LWT - Food Science and Technology, 2015, 63, 1206-1213.	2.5	76
32	Effect of Hydrophilic and Lipophilic Compounds on Zein Microstructures. Food Biophysics, 2008, 3, 174-181.	1.4	75
33	Effect of light exposure on sensorial quality, concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage. Food Chemistry, 2014, 151, 472-479.	4.2	72
34	Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT - Food Science and Technology, 2014, 55, 551-558.	2.5	72
35	Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation. Food Microbiology, 2018, 70, 120-128.	2.1	71
36	Zein Adsorption to Hydrophilic and Hydrophobic Surfaces Investigated by Surface Plasmon Resonance. Biomacromolecules, 2004, 5, 1356-1361.	2.6	67

#	Article	IF	CITATIONS
37	Insight into Curcumin-Loaded β-Lactoglobulin Nanoparticles: Incorporation, Particle Disintegration, and Releasing Profiles. Journal of Agricultural and Food Chemistry, 2014, 62, 8837-8847.	2.4	66
38	Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin. International Journal of Biological Macromolecules, 2018, 107, 1406-1413.	3.6	66
39	Development of Silverâ^'Zein Composites as a Promising Antimicrobial Agent. Biomacromolecules, 2010, 11, 2366-2375.	2.6	61
40	Porous metal-organic framework (MOF) Carrier for incorporation of volatile antimicrobial essential oil. Food Control, 2019, 98, 174-178.	2.8	61
41	Properties of Zein Films Coated with Drying Oils. Journal of Agricultural and Food Chemistry, 2005, 53, 3444-3448.	2.4	60
42	Electrodeposition of a weak polyelectrolyte hydrogel: remarkable effects of salt on kinetics, structure and properties. Soft Matter, 2013, 9, 2703.	1.2	59
43	Cationic β-Lactoglobulin Nanoparticles as a Bioavailability Enhancer: Protein Characterization and Particle Formation. Biomacromolecules, 2013, 14, 2848-2856.	2.6	58
44	Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response. Journal of Nutritional Biochemistry, 2011, 22, 1137-1142.	1.9	56
45	Effects of Different TiO2 Nanoparticles Concentrations on the Physical and Antibacterial Activities of Chitosan-Based Coating Film. Nanomaterials, 2020, 10, 1365.	1.9	56
46	Comparison of the growth of Escherichia coli O157: H7 and O104: H4 during sprouting and microgreen production from contaminated radish seeds. Food Microbiology, 2014, 44, 60-63.	2.1	54
47	Postharvest biology, quality and shelf life of buckwheat microgreens. LWT - Food Science and Technology, 2013, 51, 73-78.	2.5	52
48	Inactivation dynamics of Salmonella enterica , Listeria monocytogenes , and Escherichia coli O157:H7 in wash water during simulated chlorine depletion and replenishment processes. Food Microbiology, 2015, 50, 88-96.	2.1	52
49	Fabrication of Biomimetically Patterned Surfaces and Their Application to Probing Plant–Bacteria Interactions. ACS Applied Materials & Interfaces, 2014, 6, 12467-12478.	4.0	49
50	Tyrosinase-mediated grafting and crosslinking of natural phenols confers functional properties to chitosan. Biochemical Engineering Journal, 2014, 89, 21-27.	1.8	46
51	Advances in Using Nanotechnology Structuring Approaches for Improving Food Packaging. Annual Review of Food Science and Technology, 2020, 11, 339-364.	5.1	44
52	Proliferation of Escherichia coli 0157:H7 in Soil-Substitute and Hydroponic Microgreen Production Systems. Journal of Food Protection, 2015, 78, 1785-1790.	0.8	43
53	Topography and biocompatibility of patterned hydrophobic/hydrophilic zein layers. Acta Biomaterialia, 2008, 4, 844-851.	4.1	41
54	Investigation on chlorine-based sanitization under stabilized conditions in the presence of organic load. International Journal of Food Microbiology, 2018, 266, 150-157.	2.1	41

#	Article	IF	CITATIONS
55	Evaluation of Current Industry Practices for Maintaining Tomato Dump Tank Water Quality during Packinghouse Operations. Journal of Food Processing and Preservation, 2014, 38, 2201-2208.	0.9	34
56	Enhancement of aqueous stability of allyl isothiocyanate using nanoemulsions prepared by an emulsion inversion point method. Journal of Colloid and Interface Science, 2015, 438, 130-137.	5.0	34
57	Proteinâ^'Lipid Interactions in Zein Films Investigated by Surface Plasmon Resonance. Journal of Agricultural and Food Chemistry, 2003, 51, 7439-7444.	2.4	29
58	Extraction, identification and characterization of the water-insoluble proteins from tobacco biomass. Journal of the Science of Food and Agriculture, 2012, 92, 1368-1374.	1.7	28
59	Study on Î ² -lactoglobulin microgels adsorption onto a hydrophobic solid surface by QCM-D. Food Hydrocolloids, 2020, 98, 105320.	5.6	27
60	Understanding and optimization of graphene gas sensors. Applied Physics Letters, 2021, 119, 013104.	1,5	27
61	An entrapped metal-organic framework system for controlled release of ethylene. Journal of Colloid and Interface Science, 2019, 533, 207-215.	5.0	25
62	Image-based nutrient estimation for Chinese dishes using deep learning. Food Research International, 2021, 147, 110437.	2.9	24
63	Integrated Portable Shrimp-Freshness Prediction Platform Based on Ice-Templated Metal–Organic Framework Colorimetric Combinatorics and Deep Convolutional Neural Networks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16926-16936.	3.2	24
64	Cationic beta-lactoglobulin nanoparticles as a bioavailability enhancer: Effect of surface properties and size on the transport and delivery in vitro. Food Chemistry, 2016, 204, 391-399.	4.2	23
65	Effect of different carbohydrates on the functional properties of black rice glutelin (BRG) modified by the maillard reaction. Journal of Cereal Science, 2020, 93, 102979.	1.8	23
66	Cationic β-lactoglobulin nanoparticles as a bioavailability enhancer: Comparison between ethylenediamine and polyethyleneimine as cationizers. Food Chemistry, 2014, 159, 333-342.	4.2	21
67	Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria. Carbohydrate Polymers, 2018, 195, 505-514.	5.1	21
68	Application of machine learning for estimating label nutrients using USDA Global Branded Food Products Database, (BFPD). Journal of Food Composition and Analysis, 2021, 100, 103857.	1.9	21
69	A novel microfluidic mixer-based approach for determining inactivation kinetics of Escherichia coli O157:H7 in chlorine solutions. Food Microbiology, 2015, 49, 152-160.	2.1	20
70	Development of tyrosinase-aided crosslinking procedure for stabilizing protein nanoparticles. Food Hydrocolloids, 2016, 60, 324-334.	5.6	20
71	An Integrated Food Freshness Sensor Array System Augmented by a Metal–Organic Framework Mixed-Matrix Membrane and Deep Learning. ACS Sensors, 2022, 7, 1847-1854.	4.0	18
72	Effects of Postharvest Handling Conditions on Internalization and Growth of Salmonella enterica in Tomatoes. Journal of Food Protection, 2014, 77, 365-370.	0.8	17

#	Article	IF	CITATIONS
73	Enzymatic Writing to Soft Films: Potential to Filter, Store, and Analyze Biologically Relevant Chemical Information. Advanced Functional Materials, 2014, 24, 480-491.	7.8	17
74	Self-Assembly with Orthogonal-Imposed Stimuli To Impart Structure and Confer Magnetic Function To Electrodeposited Hydrogels. ACS Applied Materials & Interfaces, 2015, 7, 10587-10598.	4.0	16
75	Computer-assisted design for stable and porous metal-organic framework (MOF) as a carrier for curcumin delivery. LWT - Food Science and Technology, 2020, 120, 108949.	2.5	16
76	Impacts and interactions of organic compounds with chlorine sanitizer in recirculated and reused produce processing water. PLoS ONE, 2018, 13, e0208945.	1.1	15
77	Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis. Colloids and Surfaces B: Biointerfaces, 2018, 169, 470-477.	2.5	15
78	lonic Strength and pH Responsive Permeability of Soy Glycinin Microcapsules. Langmuir, 2018, 34, 9711-9718.	1.6	15
79	Scented Tartary Buckwheat Tea: Aroma Components and Antioxidant Activity. Molecules, 2019, 24, 4368.	1.7	13
80	Microgel-Stabilized Hydroxypropyl Methylcellulose and Dextran Water-in-Water Emulsion: Influence of pH, Ionic Strength, and Temperature. Langmuir, 2021, 37, 5617-5626.	1.6	13
81	Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety. Foods, 2022, 11, 544.	1.9	13
82	Controlled Self-Organization of Zein Nanostructures for Encapsulation of Food Ingredients. ACS Symposium Series, 2009, , 143-156.	0.5	12
83	Polysaccharide selection and mechanism for prevention of protein–polyphenol haze formation in beverages. Journal of Food Science, 2020, 85, 3776-3785.	1.5	12
84	Quality of fresh cut lemon during different temperature as affected by chitosan coating with clove oil. International Journal of Food Properties, 2020, 23, 1214-1230.	1.3	11
85	Improving the detection limit of Salmonella colorimetry using long ssDNA of asymmetric-PCR and non-functionalized AuNPs. Analytical Biochemistry, 2021, 626, 114229.	1.1	11
86	Zein Dynamic Adsorption to Carboxylic and Alkyl Coated Surfaces. Journal of Agricultural and Food Chemistry, 2006, 54, 517-522.	2.4	10
87	Size-Controlled Synthesis of Carboxyl-Functionalized Magnetite Particles: Effects of Molecular Weight of the Polymer and Aging. ACS Omega, 2018, 3, 17904-17913.	1.6	10
88	A novel insight in rapid allergen detection in food systems: From threshold dose to real-world concentration. Sensors and Actuators B: Chemical, 2013, 186, 597-602.	4.0	9
89	Metal–Organic Framework-Stabilized High Internal Phase Pickering Emulsions Based on Computer Simulation for Curcumin Encapsulation: Comprehensive Characterization and Stability Mechanism. ACS Omega, 2021, 6, 26556-26565.	1.6	9
90	Photo-triggered on-demand carvacrol vapor release from nano-generators for non-contact bacterial inactivation between nanomaterials and bacteria. Chemical Engineering Journal, 2021, 420, 129874.	6.6	9

#	Article	IF	CITATIONS
91	Caffeic acid phenethyl ester loaded in nano-targeted delivery system with casein: Physicochemical characterization, in vitro release, and binding mechanisms. LWT - Food Science and Technology, 2021, 150, 111938.	2.5	9
92	Eugenol-loaded chitosan emulsion holds the texture of chilled hairtail (<i>Trichiurus lepturus</i>) better: mechanism exploration by proteomic analysis. Food and Function, 2020, 11, 7509-7522.	2.1	8
93	Focusing quorum sensing signalling by nanoâ€magnetic assembly. Environmental Microbiology, 2018, 20, 2585-2597.	1.8	7
94	Quartz Crystal Microbalance with Dissipation. , 2012, , 181-194.		6
95	Development of a biopolymer nanoparticle-based method of oral toxicity testing in aquatic invertebrates. Ecotoxicology and Environmental Safety, 2014, 104, 226-230.	2.9	6
96	An immune magnetic nano-assembly for specifically amplifying intercellular quorum sensing signals. Colloids and Surfaces B: Biointerfaces, 2018, 172, 197-206.	2.5	6
97	Alkynyl silver modified chitosan and its potential applications in food area. Carbohydrate Polymers, 2021, 254, 117416.	5.1	4
98	Curcumin-Loaded Pickering Emulsion Formed by Ultrasound and Stabilized by Metal Organic Framework Optimization. Foods, 2021, 10, 523.	1.9	4
99	Characterization and mitigation of chemical oxygen demand and chlorine demand from fresh produce wash water. Food Control, 2021, 127, 108112.	2.8	4
100	Effects of Particle Size and Surface Charge on Mutagenicity and Chicken Embryonic Toxicity of New Silver Nanoclusters. ACS Omega, 2022, 7, 17703-17712.	1.6	2
101	A Novel Sensing Chip for Probing Chlorine Permeation into Simulated Produce Cracks. Advanced Materials Interfaces, 2018, 5, 1800119.	1.9	1
102	Nanofabrication Techniques in Native Polymer-based 3D Substitutes. , 2014, , 221-256.		0
103	Effect of chitosan on the induction of DNA damage response by selenium compounds. FASEB Journal, 2010, 24, lb251.	0.2	Ο
104	Changing the Landscape: An Introduction to the Agricultural and Food Chemistry Technical Program at the 258th American Chemical Society National Meeting in San Diego. Journal of Agricultural and Food Chemistry, 2020, 68, 12769-12772.	2.4	0