Xiaopeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5982627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement and prediction of isothermal vapor–liquid equilibrium of α-pineneÂ+Âcamphene/longifoleneÂ+Âabietic acidÂ+Âpalustric acidÂ+Âneoabietic acid systems. Chinese Journal Chemical Engineering, 2023, 53, 155-169.	oƁ.5	3
2	Ni Nanoparticles supported on N-doped carbon nanotubes for efficient hydrogenation of C5 hydrocarbon resins under mild conditions. Microporous and Mesoporous Materials, 2022, 333, 111727.	4.4	12
3	Vapor–Liquid Equilibrium of α-Pinene, Longifolene, and Abietic Acid of Pine Oleoresin: HS-GC Measurements and Model Correlation. Journal of Chemical & Engineering Data, 2022, 67, 1125-1139.	1.9	5
4	Experimental Determination and Computational Prediction of Dehydroabietic Acid Solubility in (â~')-α-Pinene + (â~')-β-Caryophyllene + P-Cymene System. Molecules, 2022, 27, 1220.	3.8	4
5	ZIF-derived Co/NCNTs as a superior catalyst for aromatic hydrocarbon resin hydrogenation: Scalable green synthesis and insight into reaction mechanism. Chemical Engineering Journal, 2022, 443, 136193.	12.7	11
6	Dynamics of bubble formation and ascent motion on submerged orifices under different Mo number of petrol-based random copolymer solutions. Journal of Industrial and Engineering Chemistry, 2022, 111, 398-418.	5.8	1
7	Thermal Decomposition Characteristics and Kinetic Analysis of Chicken Manure in Various Atmospheres. Agriculture (Switzerland), 2022, 12, 607.	3.1	5
8	A green resin acid ester surfactant from colophony and xylitol: Synthesis, selfâ€assembly in nonaqueous solvents, and thermodynamics. Journal of Applied Polymer Science, 2021, 138, 49808.	2.6	1
9	Selective hydrogenolysis of aryl ethers over a nitrogen-doped porous carbon supported Ni–CeO ₂ catalyst at low temperature. Catalysis Science and Technology, 2021, 11, 3241-3250.	4.1	17
10	Rationally Constructing A Nano MOF-Derived Ni and CQD Embedded N-Doped Carbon Nanosphere for the Hydrogenation of Petroleum Resin at Low Temperature. ACS Applied Materials & Interfaces, 2021, 13, 10855-10869.	8.0	38
11	Joule–Thomson Effect on a CCS-Relevant (CO ₂ + N ₂) System. ACS Omega, 2021, 6, 9857-9867.	3.5	3
12	Synergistic Effect of Ni/W/Cu on MgAl ₂ O ₄ for One-Pot Hydrogenolysis of Cellulose to Ethylene Glycol at a Low H ₂ Pressure. ACS Omega, 2021, 6, 11650-11659.	3.5	10
13	Reaction network and kinetics for the one-pot hydrogenolysis of cellulose to ethylene glycol over NiOx-WOy-Cu/MgAl2O4. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 55-71.	1.7	4
14	Comparison of thermal stability between dicyclopentadiene/hydrogenated dicyclopentadiene petroleum resin: Thermal decomposition characteristics, kinetics and evolved gas analysis by TGA/TG-MS. Thermochimica Acta, 2021, 699, 178853.	2.7	12
15	High-Temperature Stability and Pyrolysis Kinetics and Mechanism of Bio-Based and Petro-Based Resins Using TG–FTIR/MS. Industrial & Engineering Chemistry Research, 2021, 60, 13774-13789.	3.7	7
16	C9 Petroleum Resin Hydrogenation over a PEG1000-Modified Nickel Catalyst Supported on a Recyclable Fluid Catalytic Cracking Catalyst Residue. ACS Omega, 2020, 5, 20291-20298.	3.5	16
17	Vapor–Liquid Equilibria for Binary and Ternary Systems with β-Caryophyllene, Dipentene, and α-Pinene at 100.7 kPa. Journal of Chemical & Engineering Data, 2020, 65, 3770-3777.	1.9	8
18	Formation regulation of various rosin esters and intensification mechanism using pressurized CO2. Journal of Wood Chemistry and Technology, 2020, 40, 382-395.	1.7	0

XIAOPENG CHEN

#	Article	IF	CITATIONS
19	Reaction mechanism investigation on the esterification of rosin with glycerol over annealed Fe3O4/MOF-5 via kinetics and TGA-FTIR analysis. Chemical Engineering Journal, 2020, 401, 126024.	12.7	24
20	Excess Gibbs Energies and Isothermal Vapor–Liquid Equilibrium for Citral + Linalool, Citral + α-Pinene, and Linalool + α-Pinene Systems Using Headspace Gas Chromatography. Journal of Chemical & Engineering Data, 2020, 65, 3593-3604.	1.9	10
21	The Emulsifying Properties of Hydrogenated Rosin Xylitol Ester as a Biomass Surfactant for Food: Effect of pH and Salts. Molecules, 2020, 25, 302.	3.8	11
22	Measurement and correlation of vapor–liquid equilibrium data for binary systems composed of camphene, (+)-3-carene, (-)-β-caryophyllene, p-cymene, and α-pinene at 101.33 kPa. Thermochimica Acta, 2019, 679, 178318.	2.7	4
23	Measurement and Correlation of Isobaric Vapor–Liquid Equilibrium for Camphene, (+)-3-Carene, and (±)-Limonene Systems. Journal of Chemical & Engineering Data, 2019, 64, 905-915.	1.9	8
24	Measurement and correlation of vapor–liquid equilibrium data for binary and ternary systems composed of (â^')-β-caryophyllene, p-cymene and 3-carene at 101.33†kPa. Journal of Chemical Thermodynamics, 2019, 128, 215-224.	2.0	10
25	Catalytic methyl esterification of colophony over ZnO/SFCCR with subcritical CO ₂ : catalytic performance, reaction pathway and kinetics. Royal Society Open Science, 2018, 5, 172124.	2.4	5
26	Catalyst -Free Biodiesel Production from Industrial Rosin Residue (Dark-Grade Rosin) Using Supercritical Methanol. Waste and Biomass Valorization, 2018, 9, 1191-1198.	3.4	6
27	The rising behaviors of single bubbles in stagnant turpentine and pine resin solutions. Experimental Thermal and Fluid Science, 2018, 98, 170-180.	2.7	20
28	A Ni-based catalyst with polyvinyl pyrrolidone as a dispersant supported in a pretreated fluid catalytic cracking catalyst residue for C9 petroleum resin (C9 PR) hydrogenation. Royal Society Open Science, 2018, 5, 172052.	2.4	11
29	A novel acid catalyst based on super/subcritical CO ₂ -enriched water for the efficient esterification of rosin. Royal Society Open Science, 2018, 5, 171031.	2.4	8
30	Green catalytic conversion of hydrogenated rosin to glycerol esters using subcritical CO 2 in water and the associated kinetics. Journal of Supercritical Fluids, 2017, 125, 12-21.	3.2	17
31	Intrinsic kinetics study of rosin hydrogenation on a nickel catalyst supported on spent equilibrium catalyst. RSC Advances, 2017, 7, 25780-25788.	3.6	7
32	Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production. Bioresource Technology, 2017, 228, 147-155.	9.6	29
33	A novel polymerization method based on pressure drop for monomodal high solid content low viscosity latexes of poly(ethylene-co-vinyl acetate). RSC Advances, 2016, 6, 38861-38868.	3.6	2
34	A supported nano ZnO catalyst based on a spent fluid cracking catalyst (FC3R) for the heterogeneous esterification of rosin. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 219-233.	1.7	13
35	Hydrolysis behaviors of sugarcane bagasse pith in subcritical carbon dioxide–water. RSC Advances, 2016, 6, 99322-99330	3.6	10
36	A small eggshell Ni/SFC3R catalyst for C5 petroleum resin hydrogenation: preparation and characterization. RSC Advances, 2016, 6, 49113-49122.	3.6	15

XIAOPENG CHEN

#	Article	IF	CITATIONS
37	A novel nickel catalyst derived from layered double hydroxides (LDHs) supported on fluid catalytic cracking catalyst residue (FC3R) for rosin hydrogenation. Chemical Engineering Journal, 2015, 269, 434-443.	12.7	36
38	Optimization of the catalytic hydrogenation of terebinth by a Ni-based catalyst. Catalysis Science and Technology, 2015, 5, 3340-3351.	4.1	14
39	Hydrogenation of pinene on spent fluid cracking catalyst supported nickel: Langmuir–Hinshelwood kinetic modelling. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 639-660.	1.7	9
40	Kinetic study of the hydrogenation of a monoterpene over spent FCC catalystâ€supported nickel. Canadian Journal of Chemical Engineering, 2015, 93, 1770-1779.	1.7	12
41	Kinetic model for the catalytic disproportionation of pine oleoresin over Pd/C catalyst. Industrial Crops and Products, 2013, 49, 1-9.	5.2	17
42	Measurement and correlation of (vapor+liquid) equilibrium data for {α-pinene+p-cymene+(S)-(â^')-limonene} ternary system at atmospheric pressure. Journal of Chemical Thermodynamics, 2013, 58, 416-421.	2.0	13
43	Nonisothermal Decomposition Kinetics of Abietic Acid in Argon Atmosphere. Industrial & Engineering Chemistry Research, 2011, 50, 13727-13731.	3.7	15
44	STUDY OF THERMODYNAMIC PROPERTIES FOR TURPENTINE OIL SYSTEM. , 2004, , .		0
45	Measurement and Prediction of Isothermal Vapor–Liquid Equilibrium and Thermodynamic Properties of a Turpentine + Rosin System Using the COSMO-RS Model. ACS Omega, 0, , .	3.5	2
46	MoNi nano-alloy loaded on carbon nanotubes with high activity and stability for the catalytic hydrogenation of petro resin. Reaction Kinetics, Mechanisms and Catalysis, 0, , .	1.7	1