Christian B Koch

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5982603/christian-b-koch-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58
papers

2,448
citations

26
h-index

49
g-index

60
ext. papers

2,629
ext. citations

4.4
avg, IF
L-index

#	Paper	IF	Citations
58	Double bonus: surfactant-assisted biomass pelleting benefits both the pelleting process and subsequent enzymatic saccharification of the pretreated pellets. <i>Green Chemistry</i> , 2021 , 23, 1050-1061	10	6
57	Comprehensive Geophysical Study at Wabar Crater, Rub Al-Khali Desert, Saudi Arabia. <i>Earth and Space Science</i> , 2021 , 8, e2020EA001432	3.1	O
56	Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: Effects of sediment-water interactions, sediment burial age and groundwater residence time. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 225, 192-209	5.5	35
55	Investigation of a Monturaqui Impactite by Means of Bi-Modal X-ray and Neutron Tomography. <i>Journal of Imaging</i> , 2018 , 4, 72	3.1	7
54	Kinetics of solution crystal growth of strengite, FePO4,2H2O. Journal of Crystal Growth, 2018 , 482, 9-14	1.6	5
53	Crystal chemistry, MBsbauer spectroscopy, and thermodynamic properties of botryogen. <i>Neues Jahrbuch Fur Mineralogie, Abhandlungen</i> , 2016 , 193, 147-159	1	2
52	Thermal behavior of chlorites of the clinochlore-chamosite solid solution series: Oxidation of structural iron, hydrogen release and dehydroxylation. <i>Applied Clay Science</i> , 2016 , 132-133, 626-634	5.2	10
51	Thermodynamic properties of tooeleite, Fe63+(As3+O3)4(SO4)(OH)4[4H2O. <i>Chemie Der Erde</i> , 2016 , 76, 419-428	4.3	9
50	Magnetic anisotropy in natural amphibole crystals. <i>American Mineralogist</i> , 2015 , 100, 1940-1951	2.9	18
49	Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact Levidence from ejecta deposits in Belize and Mexico. <i>Gondwana Research</i> , 2015 , 27, 1079-1088	5.1	19
48	Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals. <i>Journal of Geophysical Research: Solid Earth</i> , 2015 , 120, 1431-1451	3.6	20
47	Groundwater transport of Cu in laterites in Zambia. <i>Applied Geochemistry</i> , 2015 , 56, 94-102	3.5	4
46	Low-temperature magnetic anisotropy in micas and chlorite. <i>Tectonophysics</i> , 2014 , 629, 63-74	3.1	27
45	Effects of temperature on rates and mineral products of microbial Fe(II) oxidation by Leptothrix cholodnii at microaerobic conditions. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 108, 107-124	5.5	34
44	A contribution to the crystal chemistry of the voltaite group: solid solutions, MBsbauer and infrared spectra, and anomalous anisotropy. <i>Mineralogy and Petrology</i> , 2013 , 107, 221-233	1.6	11
43	Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1. <i>Water Research</i> , 2013 , 47, 2543-5	4 ^{12.5}	20
42	Oxidation of Dodecanoate Intercalated Iron(II)Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 5718-5727	2.3	19

(2009-2012)

41	Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercalated with dodecanoate anions. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	33
40	Composite films of arabinoxylan and fibrous sepiolite: morphological, mechanical, and barrier properties. <i>ACS Applied Materials & mechanical, and barrier properties.</i>	9.5	36
39	Synthesis and characterization of laurate-intercalated MgAl layered double hydroxide prepared by coprecipitation. <i>Applied Clay Science</i> , 2012 , 65-66, 143-151	5.2	13
38	Composition of characteristic soils on the raised atoll Bellona, Solomon Islands. <i>Geoderma</i> , 2012 , 170, 186-194	6.7	4
37	Hygroscopic growth and CCN activity of HULIS from different environments. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		28
36	Degradation of l-polylactide during melt processing with layered double hydroxides. <i>Polymer Degradation and Stability</i> , 2012 , 97, 2002-2009	4.7	12
35	Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils. <i>Journal of Environmental Quality</i> , 2012 , 41, 938-49	3.4	49
34	Vibrational, X-ray absorption, and M\(\text{B}\)sbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. <i>Chemical Geology</i> , 2011 , 284, 296-305	4.2	41
33	Multiproxy analysis of a new terrestrial and a marine Cretaceous Paleogene (KPg) boundary site from New Zealand. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 657-672	5.5	25
32	Melt processing of poly(L-lactic acid) in the presence of organomodified anionic or cationic clays. <i>Journal of Applied Polymer Science</i> , 2011 , 122, 112-125	2.9	61
31	Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. <i>Analytical Chemistry</i> , 2011 , 83, 2461-8	7.8	155
30	The Role of the Nature of Pillars in the Structural and Magnetic Properties of Magnetic Pillared Clays. <i>Clays and Clay Minerals</i> , 2011 , 59, 547-559	2.1	1
29	Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 3367-3381	5.5	102
28	Intercalation of linear C9II16 carboxylates in layered FeIIIIeIII-hydroxides (green rust) via ion exchange. <i>Applied Clay Science</i> , 2010 , 48, 334-341	5.2	28
27	One-pot synthesis and characterization of FeIIBeIII hydroxide (green rust) intercalated with C9II14 linear alkyl carboxylates. <i>Applied Clay Science</i> , 2010 , 50, 512-519	5.2	20
26	Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. <i>Polymer Degradation and Stability</i> , 2010 , 95, 2563-2573	4.7	74
25	Provenance of pottery determined by soil physicochemical and chemometric methods: A case study from Frederiksgave, Ghana. <i>Geografisk Tidsskrift</i> , 2009 , 109, 69-79	1.5	
24	Magnetic titanium-pillared clays (Ti-M-PILC): Magnetic studies and M\(\bar{B}\)sbauer spectroscopy. <i>Clays and Clay Minerals</i> , 2009 , 57, 433-443	2.1	7

23	The standard Gibbs energy of formation of Fe(II)Fe(III) hydroxide sulfate green rust. <i>Clays and Clay Minerals</i> , 2008 , 56, 633-644	2.1	11
22	Thermodynamic properties of feroxyhyte (PFeOOH). Clays and Clay Minerals, 2008, 56, 526-530	2.1	13
21	Interactions between goethite particles subjected to heat treatment. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 135215	1.8	10
20	Characteristics and genesis of pisolitic soil layers in a tropical moist semi-deciduous forest of Ghana. <i>Geoderma</i> , 2007 , 141, 130-138	6.7	9
19	Genotype-specific spatial distribution of starch molecules in the starch granule: a combined CLSM and SEM approach. <i>Biomacromolecules</i> , 2006 , 7, 2310-20	6.9	118
18	Sorption and desorption of arsenic to ferrihydrite in a sand filter. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 8045-51	10.3	68
17	Properties of Water-Dispersible Colloids from Macropore Deposits and Bulk Horizons of an Agrudalf. <i>Soil Science Society of America Journal</i> , 2004 , 68, 1844-1852	2.5	33
16	Si-Associated Goethite in Hydrothermal Sediments of the Atlantis II and Thetis Deeps, Red Sea. <i>Clays and Clay Minerals</i> , 2004 , 52, 115-129	2.1	11
15	WEATHERING INTENSITY CONTROLLING SUSTAINABILITY OF ULTISOLS UNDER SHIFTING CULTIVATION IN THE CHITTAGONG HILL TRACTS OF BANGLADESH. <i>Soil Science</i> , 2004 , 169, 663-674	0.9	11
14	Movement of pendimethalin, ioxynil and soil particles to field drainage tiles. <i>Pest Management Science</i> , 2003 , 59, 85-96	4.6	44
13	Lepidocrocite in hydrothermal sediments of the Atlantis II and Thetis Deeps, red sea. <i>Clays and Clay Minerals</i> , 2002 , 50, 186-197	2.1	9
12	Kinetics of nitrate reduction by green rusts of interlayer anion and Fe(II):Fe(III) ratio. <i>Applied Clay Science</i> , 2001 , 18, 81-91	5.2	148
11	Conditions for biological precipitation of iron by Gallionella ferruginea in a slightly polluted ground water. <i>Applied Geochemistry</i> , 2001 , 16, 1129-1137	3.5	59
10	Magnetic dynamics of weakly and strongly interacting hematite nanoparticles. <i>Physical Review B</i> , 2000 , 62, 1124-1135	3.3	183
9	Magnetic properties of hematite nanoparticles. <i>Physical Review B</i> , 2000 , 61, 6826-6838	3.3	298
8	Effects of Thermal Treatment on Mineralogy and Heavy Metal Behavior in Iron Oxide Stabilized Air Pollution Control Residues. <i>Environmental Science & Environmental Science & </i>	10.3	40
7	Iron oxides and smectites in sediments from the Atlantis II Deep, Red Sea. <i>European Journal of Mineralogy</i> , 1998 , 10, 953-968	2.2	22
6	Abiotic Nitrate Reduction to Ammonium: Key Role of Green Rust. <i>Environmental Science & Emp; Technology</i> , 1996 , 30, 2053-2056	10.3	257

LIST OF PUBLICATIONS

5	A high temperature MBsbauer study of nanocrystalline Fe73.5Cu1Nb3B7Si15.5. <i>Physica Scripta</i> , 1995 , 52, 113-115	2.6	1
4	Synthesis and characterization of pyroaurite. <i>Applied Clay Science</i> , 1995 , 10, 5-19	5.2	73
3	Synthesis and Properties of Hexacyanoferrate Interlayered in Hydrotalcite. I. Hexacyanoferrate(II). <i>Clays and Clay Minerals</i> , 1994 , 42, 170-179	2.1	43
2	Synthesis and Characterization of Cobalt(II)-Iron(III) Hydroxide Carbonate, a Layered Double Hydroxide Belonging to the Pyroaurite Group. <i>Journal of Solid State Chemistry</i> , 1994 , 113, 46-53	3.3	46
1	Iron(IV) in layered Cobalt-Iron Oxide Formed by Electrochemical Oxidation. <i>Inorganic Chemistry</i> , 1994 , 33, 5363-5365	5.1	4