Christian B Koch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5982603/publications.pdf

Version: 2024-02-01

201385 168136 2,864 59 27 53 citations h-index g-index papers 60 60 60 3988 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Magnetic properties of hematite nanoparticles. Physical Review B, 2000, 61, 6826-6838.	1.1	344
2	Abiotic Nitrate Reduction to Ammonium:Â Key Role of Green Rust. Environmental Science & Emp; Technology, 1996, 30, 2053-2056.	4.6	301
3	Magnetic dynamics of weakly and strongly interacting hematite nanoparticles. Physical Review B, 2000, 62, 1124-1135.	1.1	197
4	Kinetics of nitrate reduction by green rusts—effects of interlayer anion and Fe(II):Fe(III) ratio. Applied Clay Science, 2001, 18, 81-91.	2.6	166
5	Quantitative Characterization of Gold Nanoparticles by Field-Flow Fractionation Coupled Online with Light Scattering Detection and Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2011, 83, 2461-2468.	3.2	164
6	Genotype-Specific Spatial Distribution of Starch Molecules in the Starch Granule:Â A Combined CLSM and SEM Approach. Biomacromolecules, 2006, 7, 2310-2320.	2.6	139
7	Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam. Geochimica Et Cosmochimica Acta, 2010, 74, 3367-3381.	1.6	119
8	Synthesis and characterization of pyroaurite. Applied Clay Science, 1995, 10, 5-19.	2.6	83
9	Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polymer Degradation and Stability, 2010, 95, 2563-2573.	2.7	78
10	Sorption and Desorption of Arsenic to Ferrihydrite in a Sand Filter. Environmental Science & Samp; Technology, 2005, 39, 8045-8051.	4.6	73
11	Conditions for biological precipitation of iron by Gallionella ferruginea in a slightly polluted ground water. Applied Geochemistry, 2001, 16, 1129-1137.	1.4	68
12	Vibrational, X-ray absorption, and MÃ \P ssbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chemical Geology, 2011, 284, 296-305.	1.4	65
13	Melt processing of poly(<scp>L</scp> â€lactic acid) in the presence of organomodified anionic or cationic clays. Journal of Applied Polymer Science, 2011, 122, 112-125.	1.3	64
14	Vivianite Precipitation and Phosphate Sorption following Iron Reduction in Anoxic Soils. Journal of Environmental Quality, 2012, 41, 938-949.	1.0	63
15	Synthesis and Properties of Hexacyanoferrate Interlayered in Hydrotalcite. I. Hexacyanoferrate(II). Clays and Clay Minerals, 1994, 42, 170-179.	0.6	58
16	Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: Effects of sediment-water interactions, sediment burial age and groundwater residence time. Geochimica Et Cosmochimica Acta, 2018, 225, 192-209.	1.6	53
17	Movement of pendimethalin, ioxynil and soil particles to field drainage tiles. Pest Management Science, 2003, 59, 85-96.	1.7	52
18	Synthesis and Characterization of Cobalt(II)-Iron(III) Hydroxide Carbonate, a Layered Double Hydroxide Belonging to the Pyroaurite Group. Journal of Solid State Chemistry, 1994, 113, 46-53.	1.4	50

#	Article	IF	Citations
19	Effects of Thermal Treatment on Mineralogy and Heavy Metal Behavior in Iron Oxide Stabilized Air Pollution Control Residues. Environmental Science & E	4.6	44
20	Effects of temperature on rates and mineral products of microbial Fe(II) oxidation by Leptothrix cholodnii at microaerobic conditions. Geochimica Et Cosmochimica Acta, 2013, 108, 107-124.	1.6	42
21	Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Barrier Properties. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3378-3386.	4.0	40
22	Efficient Dechlorination of Carbon Tetrachloride by Hydrophobic Green Rust Intercalated with Dodecanoate Anions. Environmental Science & Environmental	4.6	37
23	Properties of Waterâ€Dispersible Colloids from Macropore Deposits and Bulk Horizons of an Agrudalf. Soil Science Society of America Journal, 2004, 68, 1844-1852.	1.2	36
24	Intercalation of linear C9–C16 carboxylates in layered Fell–Felll-hydroxides (green rust) via ion exchange. Applied Clay Science, 2010, 48, 334-341.	2.6	32
25	Hygroscopic growth and CCN activity of HULIS from different environments. Journal of Geophysical Research, 2012, 117, .	3.3	32
26	Low-temperature magnetic anisotropy in micas and chlorite. Tectonophysics, 2014, 629, 63-74.	0.9	29
27	Multiproxy analysis of a new terrestrial and a marine Cretaceous–Paleogene (K–Pg) boundary site from New Zealand. Geochimica Et Cosmochimica Acta, 2011, 75, 657-672.	1.6	28
28	Inhibition of microbial trichloroethylene dechorination by Fe (III) reduction depends on Fe mineralogy: A batch study using the bioaugmentation culture KB-1. Water Research, 2013, 47, 2543-2554.	5.3	26
29	Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers. European Journal of Inorganic Chemistry, 2013, 2013, 5718-5727.	1.0	24
30	Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact — evidence from ejecta deposits in Belize and Mexico. Gondwana Research, 2015, 27, 1079-1088.	3.0	23
31	Iron oxides and smectites in sediments from the Atlantis II Deep, Red Sea. European Journal of Mineralogy, 1998, 10, 953-968.	0.4	23
32	One-pot synthesis and characterization of Fell–Felll hydroxide (green rust) intercalated with C9–C14 linear alkyl carboxylates. Applied Clay Science, 2010, 50, 512-519.	2.6	22
33	Magnetic anisotropy in natural amphibole crystals. American Mineralogist, 2015, 100, 1940-1951.	0.9	22
34	Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals. Journal of Geophysical Research: Solid Earth, 2015, 120, 1431-1451.	1.4	21
35	The Standard Gibbs Energy of Formation of Fe(II)Fe(III) Hydroxide Sulfate Green Rust. Clays and Clay Minerals, 2008, 56, 633-644.	0.6	20
36	Thermal behavior of chlorites of the clinochlore-chamosite solid solution series: Oxidation of structural iron, hydrogen release and dehydroxylation. Applied Clay Science, 2016, 132-133, 626-634.	2.6	20

#	Article	IF	CITATIONS
37	Double bonus: surfactant-assisted biomass pelleting benefits both the pelleting process and subsequent enzymatic saccharification of the pretreated pellets. Green Chemistry, 2021, 23, 1050-1061.	4.6	18
38	Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation. Applied Clay Science, 2012, 65-66, 143-151.	2.6	16
39	A contribution to the crystal chemistry of the voltaite group: solid solutions, Mössbauer and infrared spectra, and anomalous anisotropy. Mineralogy and Petrology, 2013, 107, 221-233.	0.4	16
40	Lepidocrocite in Hydrothermal Sedimentof the Atlantis II and Thetis Deeps, Red Sea. Clays and Clay Minerals, 2002, 50, 186-197.	0.6	15
41	Si-associated Goethite in Hydrothermal Sediments of the Atlantis Ii and Thetis Deeps, Red Sea. Clays and Clay Minerals, 2004, 52, 115-129.	0.6	15
42	Thermodynamic properties of feroxyhyte (δ′-FeOOH). Clays and Clay Minerals, 2008, 56, 526-530.	0.6	15
43	Thermodynamic properties of tooeleite, Fe63+(As3+O3)4(SO4)(OH)4·4H2O. Chemie Der Erde, 2016, 76, 419-428.	0.8	14
44	Degradation of l-polylactide during melt processing with layered double hydroxides. Polymer Degradation and Stability, 2012, 97, 2002-2009.	2.7	13
45	Investigation of a Monturaqui Impactite by Means of Bi-Modal X-ray and Neutron Tomography. Journal of Imaging, 2018, 4, 72.	1.7	12
46	WEATHERING INTENSITY CONTROLLING SUSTAINABILITY OF ULTISOLS UNDER SHIFTING CULTIVATION IN THE CHITTAGONG HILL TRACTS OF BANGLADESH. Soil Science, 2004, 169, 663-674.	0.9	11
47	Interactions between goethite particles subjected to heat treatment. Journal of Physics Condensed Matter, 2008, 20, 135215.	0.7	11
48	Characteristics and genesis of pisolitic soil layers in a tropical moist semi-deciduous forest of Ghana. Geoderma, 2007, 141, 130-138.	2.3	9
49	Magnetic Titanium-Pillared Clays (Ti-M-PILC): Magnetic Studies and Mössbauer Spectroscopy. Clays and Clay Minerals, 2009, 57, 433-443.	0.6	8
50	Kinetics of solution crystal growth of strengite, FePO4,2H2O. Journal of Crystal Growth, 2018, 482, 9-14.	0.7	8
51	Iron(IV) in layered Cobalt-Iron Oxide Formed by Electrochemical Oxidation. Inorganic Chemistry, 1994, 33, 5363-5365.	1.9	4
52	Composition of characteristic soils on the raised atoll Bellona, Solomon Islands. Geoderma, 2012, 170, 186-194.	2.3	4
53	Groundwater transport of Cu in laterites in Zambia. Applied Geochemistry, 2015, 56, 94-102.	1.4	4
54	Comprehensive Geophysical Study at Wabar Crater, Rub Alâ€Khali Desert, Saudi Arabia. Earth and Space Science, 2021, 8, e2020EA001432.	1.1	4

#	Article	IF	CITATIONS
55	The Role of the Nature of Pillars in the Structural and Magnetic Properties of Magnetic Pillared Clays. Clays and Clay Minerals, 2011, 59, 547-559.	0.6	3
56	Crystal chemistry, Mössbauer spectroscopy, and thermodynamic properties of botryogen. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2016, 193, 147-159.	0.1	2
57	A high temperature Mössbauer study of nanocrystalline Fe73.5Cu1Nb3B7Si15.5. Physica Scripta, 1995, 52, 113-115.	1.2	1
58	Characterization and comparison of iron oxyhydroxide precipitates from biotic and abiotic groundwater treatments. Journal of Water Supply: Research and Technology - AQUA, 2017, 66, 96-104.	0.6	1
59	Provenance of pottery determined by soil physicochemical and chemometric methods: A case study from Frederiksgave, Ghana. Geografisk Tidsskrift, 2009, 109, 69-79.	0.4	0