Philip Nakashima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5982054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Bonding Electron Density in Aluminum. Science, 2011, 331, 1583-1586.	12.6	141
2	Quantum Crystallography: Current Developments and Future Perspectives. Chemistry - A European Journal, 2018, 24, 10881-10905.	3.3	108
3	Characterisation of Li in the surface film of a corrosion resistant Mg-Li(-Al-Y-Zr) alloy. Applied Surface Science, 2019, 494, 1066-1071.	6.1	36
4	Conjugated precipitation of twin-related α and Ti2Cu phases in a Ti–25V–3Cu alloy. Acta Materialia, 2015, 84, 457-471.	7.9	32
5	Measuring the PSF from aperture images of arbitrary shape—an algorithm. Ultramicroscopy, 2003, 94, 135-148.	1.9	26
6	Aberration-corrected scanning transmission electron microscopy study of β′-like precipitates in an Al–Mg–Ge alloy. Acta Materialia, 2012, 60, 3239-3246.	7.9	24
7	Charge density analysis from complementary high energy synchrotron X-ray and electron diffraction data. Journal of Physics and Chemistry of Solids, 2001, 62, 2109-2117.	4.0	23
8	Particle size dependence of the volume plasmon energy in cadmium sulphide quantum dots by electron energy loss spectroscopy. Journal of Applied Physics, 1999, 85, 1556-1559.	2.5	22
9	A Combination Method of Charge Density Measurement in Hard Materials Using Accurate, Quantitative Electron and X-ray Diffraction: The α-Al2O3 Case. Microscopy and Microanalysis, 2003, 9, 419-427.	0.4	17
10	Precipitates in an Al–Mg–Ge alloy studied by aberration-corrected scanning transmission electron microscopy. Acta Materialia, 2011, 59, 6103-6109.	7.9	17
11	Thickness Difference: A New Filtering Tool for Quantitative Electron Diffraction. Physical Review Letters, 2007, 99, 125506.	7.8	16
12	Optimization of exit-plane waves restored from HRTEM through-focal series. Ultramicroscopy, 2010, 110, 151-161.	1.9	15
13	Topologically Enclosed Aluminum Voids as Plasmonic Nanostructures. ACS Nano, 2017, 11, 11383-11392.	14.6	15
14	Mechanisms of void shrinkage in aluminium. Journal of Applied Crystallography, 2016, 49, 1459-1470.	4.5	13
15	Mesoporous carbon confined conversion of silica nanoparticles into zeolite nanocrystals. Microporous and Mesoporous Materials, 2009, 117, 490-496.	4.4	12
16	Improved quantitative CBED structure-factor measurement by refinement of nonlinear geometric distortion corrections. Journal of Applied Crystallography, 2005, 38, 374-376.	4.5	11
17	Quantitative convergent-beam electron diffraction and quantum crystallography—the metallic bond in aluminium. Structural Chemistry, 2017, 28, 1319-1332.	2.0	11
18	Crystal structure study of a β′-copper vanadium bronze, Cu x V2O5 (x = 0.63), by X-ray and convergent beam electron diffraction. Acta Crystallographica Section B: Structural Science, 2005, 61, 17-24.	1.8	10

Philip Nakashima

#	ARTICLE	IF	CITATIONS
19	Projected thickness reconstruction from a single defocused transmission electron microscope image of an amorphous object. Ultramicroscopy, 2011, 111, 959-968.	1.9	10
20	How do specimen preparation and crystal perfection affect structure factor measurements by quantitative convergent-beam electron diffraction?. Journal of Applied Crystallography, 2017, 50, 602-611.	4.5	8
21	Differential quantitative analysis of background structure in energy-filtered convergent-beam electron diffraction patterns. Journal of Applied Crystallography, 2010, 43, 280-284.	4.5	7
22	A practical guide to the measurement of structure phases and magnitudes by three-beam convergent beam electron diffraction. Ultramicroscopy, 2008, 108, 901-910.	1.9	5
23	In situ quantification of noise as a function of signal in digital images. Optics Letters, 2012, 37, 1023.	3.3	5
24	Direct atomic structure determination by the inspection of structural phase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14144-14149.	7.1	5
25	Three-beam convergent-beam electron diffraction for measuring crystallographic phases. IUCrJ, 2018, 5, 753-764.	2.2	5
26	A new approach to structure amplitude determination from 3-beam convergent beam electron diffraction patterns. Ultramicroscopy, 2011, 111, 841-846.	1.9	3
27	Growth of faceted, monolayer-coated nanovoids in aluminium. Acta Materialia, 2021, 206, 116594.	7.9	2
28	Measuring Density Functional Parameters from Electron Diffraction Patterns. Physical Review Letters, 2021, 126, 176402.	7.8	2
29	Identification of the impurity phase in high-purity CeB6 by convergent-beam electron diffraction. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, 489-500.	0.1	1
30	Novel CBED Methods for Structure Analysis. Microscopy and Microanalysis, 2006, 12, 792-793.	0.4	0
31	Frontiers of Electron Microscopy in Materials Science. Microscopy and Microanalysis, 2014, 20, 999-1000.	0.4	0