Helen F Gleeson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5981631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared triggered smart contact lens for the treatment of presbyopia. Journal Physics D: Applied Physics, 2022, 55, 210001.	1.3	3
2	Chiral nematic liquid crystal droplets as a basis for sensor systems. Molecular Systems Design and Engineering, 2022, 7, 607-621.	1.7	15
3	Toward <i>In Silico</i> Design of Highly Tunable Liquid Crystal Elastomers. Macromolecules, 2022, 55, 4320-4330.	2.2	7
4	Ferroelectric Smectic Liquid Crystals as Electrocaloric Materials. Crystals, 2022, 12, 809.	1.0	1
5	Early Career Stars of the Decade. Crystals, 2021, 11, 52.	1.0	0
6	Production of giant unilamellar vesicles and encapsulation of lyotropic nematic liquid crystals. Soft Matter, 2021, 17, 2234-2241.	1.2	15
7	Liquid Crystal Elastomers for Biological Applications. Nanomaterials, 2021, 11, 813.	1.9	40
8	A Fluorescence Sensor for Pb ²⁺ Detection Based on Liquid Crystals and Aggregation-Induced Emission Luminogens. ACS Applied Materials & Interfaces, 2021, 13, 22361-22367.	4.0	49
9	Understanding the physics of the auxetic response in a liquid crystal elastomer. Physical Review Research, 2021, 3, .	1.3	17
10	Textures of Nematic Liquid Crystal Cylindric-Section Droplets Confined by Chemically Patterned Surfaces. Crystals, 2021, 11, 65.	1.0	5
11	Development of Advanced Terahertz Optics Using Liquid Crystals. , 2021, , .		1
12	Robust and Flexible Optically Active 2D Membranes Based on Encapsulation of Liquid Crystals in Graphene Oxide Pockets. Advanced Materials Interfaces, 2021, 8, 2101432.	1.9	6
13	Influence of Liquid Crystallinity and Mechanical Deformation on the Molecular Relaxations of an Auxetic Liquid Crystal Elastomer. Molecules, 2021, 26, 7313.	1.7	5
14	Textile materials inspired by structural colour in nature. RSC Advances, 2020, 10, 24362-24367.	1.7	2
15	Protein Microgel-Stabilized Pickering Liquid Crystal Emulsions Undergo Analyte-Triggered Configurational Transition. Langmuir, 2020, 36, 10091-10102.	1.6	15
16	Control of Director Fields in Phospholipid-Coated Liquid Crystal Droplets. Langmuir, 2020, 36, 6436-6446.	1.6	20
17	Isotropic Liquid Crystal Elastomers as Exceptional Photoelastic Strain Sensors. Macromolecules, 2020, 53, 3709-3718.	2.2	25
18	Toward Programmed Complex Stress-Induced Mechanical Deformations of Liquid Crystal Elastomers. Crystals, 2020, 10, 315.	1.0	3

#	Article	IF	CITATIONS
19	Anomalies in the twist elastic behaviour of mixtures of calamitic and bent-core liquid crystals. Liquid Crystals, 2020, 47, 895-907.	0.9	5
20	Understanding liquid crystal order parameters deduced from different vibrations in polarised Raman spectroscopy. Liquid Crystals, 2019, 46, 219-233.	0.9	2
21	Mechanical deformations of a liquid crystal elastomer at director angles between 0° and 90°: Deducing an empirical model encompassing anisotropic nonlinearity. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1367-1377.	2.4	20
22	Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides. Lab on A Chip, 2019, 19, 1082-1089.	3.1	65
23	Efficiency improvements in a dichroic dye-doped liquid crystal Fresnel lens. Optics Express, 2019, 27, 26799.	1.7	5
24	Novel devices with photosensitive elements. , 2019, , .		0
25	New insights into the nature of semi-soft elasticity and "mechanical-Fréedericksz transitions―in liquid crystal elastomers. Soft Matter, 2018, 14, 1301-1310.	1.2	34
26	Anomalously low twist and bend elastic constants in an oxadiazole-based bent-core nematic liquid crystal and its mixtures; contributions of spontaneous chirality and polarity. Journal of Materials Chemistry C, 2018, 6, 980-988.	2.7	24
27	Coincident molecular auxeticity and negative order parameter in a liquid crystal elastomer. Nature Communications, 2018, 9, 5095.	5.8	53
28	Self-assembling, macroscopically oriented, polymer filaments; a doubly nematic organogel. Soft Matter, 2018, 14, 9159-9167.	1.2	4
29	Switchable Liquid Crystal Contact Lenses for the Correction of Presbyopia. Crystals, 2018, 8, 29.	1.0	46
30	Creation and topological charge switching of defect loops on a long fibre in the nematic liquid crystals, 2018, 45, 2294-2305.	0.9	1
31	All-optical responsive azo-doped liquid crystal laser protection filter. Optics Express, 2018, 26, 34179.	1.7	7
32	Observing the emergence of phase biaxiality in a polar smectic A system via polarised Raman spectroscopy. Journal of Materials Chemistry C, 2017, 5, 1195-1205.	2.7	5
33	Electric-field-induced transport of microspheres in the isotropic and chiral nematic phase of liquid crystals. Physical Review E, 2017, 95, 022703.	0.8	8
34	Design considerations for liquid crystal contact lenses. Journal Physics D: Applied Physics, 2017, 50, 485401.	1.3	16
35	Tuneable and switchable liquid crystal laser protection system. Applied Optics, 2017, 56, 8061.	0.9	12
36	Liquid crystal contact lenses with graphene electrodes and switchable focus. MRS Advances, 2016, 1, 3509-3515.	0.5	0

#	Article	IF	CITATIONS
37	Second-harmonic generation and the influence of flexoelectricity in the nematic phases of bent-core oxadiazoles. Liquid Crystals, 2016, 43, 1315-1332.	0.9	11
38	Understanding the unusual reorganization of the nanostructure of a dark conglomerate phase. Physical Review E, 2015, 91, 042504.	0.8	22
39	Raman scattering studies of order parameters in liquid crystalline dimers exhibiting the nematic and twist-bend nematic phases. Journal of Materials Chemistry C, 2015, 3, 10007-10016.	2.7	71
40	Flexoelectricity in an oxadiazole bent-core nematic liquid crystal. Applied Physics Letters, 2014, 105, .	1.5	18
41	The Nematic Phases of Bentâ€Core Liquid Crystals. ChemPhysChem, 2014, 15, 1251-1260.	1.0	79
42	Unusual electric-field-induced transformations in the dark conglomerate phase of a bent-core liquid crystals, 2014, 41, 800-811.	0.9	32
43	Field induced transitions and interlayer interactions in intermediate smectic phases. Journal of Materials Chemistry C, 2014, 2, 147-157.	2.7	8
44	Electrically tunable refractive index in the dark conglomerate phase of a bent-core liquid crystal. Applied Physics Letters, 2014, 104, .	1.5	21
45	The influence of structure on the elastic, optical and dielectric properties of nematic phases formed from bent-core molecules. Journal of Materials Chemistry C, 2013, 1, 6667.	2.7	44
46	The magnitude and temperature dependence of the Kerr constant in liquid crystal blue phases and the dark conglomerate phase. Liquid Crystals, 2013, 40, 1446-1454.	0.9	13
47	The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle. Journal of Materials Chemistry C, 2013, 1, 2416.	2.7	47
48	Understanding the distinctive elastic constants in an oxadiazole bent-core nematic liquid crystal. Physical Review E, 2012, 86, 041703.	0.8	67
49	Field-Induced Transitions Between Antiferroelectric and Ferrielectric Phases. Ferroelectrics, 2012, 431, 40-47.	0.3	10
50	Reorientation mechanisms in smectic A liquid crystals. Liquid Crystals, 2012, 39, 1261-1275.	0.9	8
51	A field-induced ferrielectric liquid crystal phase. Applied Physics Letters, 2011, 98, 043501.	1.5	27
52	Comment on "Raman Scattering Study of Phase Biaxiality in a Thermotropic Bent-Core Nematic Liquid Crystal― Physical Review Letters, 2011, 107, 109801; author reply 109802.	2.9	8
53	Optical measurements of orientational order in uniaxial and biaxial nematic liquid crystals. Liquid Crystals, 2010, 37, 949-959.	0.9	29
54	Stable field-induced ferrielectric liquid crystal phases in devices. Applied Physics Letters, 2009, 94, 153507.	1.5	8

#	Article	IF	CITATIONS
55	Revealing the uniaxial to biaxial nematic liquid crystal phase transition via distinctive electroconvection. Applied Physics Letters, 2009, 94, 193507.	1.5	48
56	Formation of Monolayer Graphene by Annealing Sacrificial Nickel Thin Films. Journal of Physical Chemistry C, 2009, 113, 16565-16567.	1.5	68
57	Unusual properties of a bent-core liquid-crystalline fluid. Soft Matter, 2009, 5, 463-471.	1.2	126
58	Thermotropic biaxial nematic order parameters and phase transitions deduced by Raman scattering. Europhysics Letters, 2008, 82, 56001.	0.7	84
59	Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Optics Express, 2008, 16, 6877.	1.7	45
60	Accurate modelling of multilayer chiral nematic devices through the Berreman 4 × 4 matrix methods. Journal Physics D: Applied Physics, 2007, 40, 3579-3586.	1.3	17
61	Using the full Raman depolarisation in the determination of the order parameters in liquid crystal systems. European Physical Journal E, 2007, 24, 119-127.	0.7	36
62	Remarkably wide four-layer smectic phases in mixtures of liquid crystals and highly chiral dopants. Journal of Materials Chemistry, 2006, 16, 3753.	6.7	32
63	An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device. Liquid Crystals, 2006, 33, 503-510.	0.9	28
64	Examination of the interlayer strength of smectic liquid crystals through the study of partially fluorinated and branched fluorinated end-groups. Journal of Materials Chemistry, 2006, 16, 2181.	6.7	27
65	Resonant X-ray Scattering: A Tool for Structure Elucidation in Liquid Crystals. ChemPhysChem, 2006, 7, 321-328.	1.0	37
66	Laser manipulation in liquid crystals: an approach to microfluidics and micromachines. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2789-2805.	1.6	55
67	Mechanisms of switching in an antiferroelectric liquid crystal device revealed by timeâ€resolved Xâ€ray scattering. Liquid Crystals, 2006, 33, 451-457.	0.9	4
68	Investigation into the Effects of Optical Tilt Angle Profile, Biaxiality and Dispersion of the Optic Axis on the Calculation of Reflection Spectra of SmC* Liquid Crystal Films. Ferroelectrics, 2005, 315, 205-211.	0.3	0
69	Optical Bragg Scattering from a Polymer-Stabilized Anti-Ferroelectric Liquid Crystal. Ferroelectrics, 2005, 321, 53-61.	0.3	3
70	The Effect of Polymer Stabilization on Phase Transitions in a Series of Antiferroelectric Heterocyclic Esters. Molecular Crystals and Liquid Crystals, 2005, 439, 135/[2001]-145/[2011].	0.4	1
71	The Effect of Electric Fields on Selective Reflection in the SmC* Phase of Two Antiferroelectric Liquid Crystals. Molecular Crystals and Liquid Crystals, 2005, 439, 125/[1991]-133/[1999].	0.4	1
72	Phase Behaviour of an Antiferroelectric Liquid Crystal Studied by Raman Spectroscopy. Ferroelectrics, 2004, 311, 59-66.	0.3	6

#	Article	IF	CITATIONS
73	Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets. Applied Physics Letters, 2004, 84, 4292-4294.	1.5	53
74	Optical Properties of Cholesteric Materials used in Surface Stabilised Cholesteric Texture Devices. Molecular Crystals and Liquid Crystals, 2004, 411, 57-70.	0.4	9
75	On the temperature dependence of the tilt and spontaneous polarisation in high tilt antiferroelectric liquid crystalsElectronic supplementary information (ESI) available: derivation of the expression for the free energy expansion in the biaxial SmC* phase. See http://www.rsc.org/suppdata/jm/b3/b314747a/. lournal of Materials Chemistry. 2004. 14. 1480.	6.7	31
76	Liquid Crystals, the Visual System and Polarization Sensitivity. Liquid Crystals Today, 2004, 13, 1-7.	2.3	0
77	The transverse trapping force of an optical trap: Factors affecting its measurement. Journal of Modern Optics, 2003, 50, 1521-1532.	0.6	9
78	An experimental and theoretical investigation into the reflection spectra of SmC* and SmCA* phases. Journal of Materials Chemistry, 2003, 13, 353-359.	6.7	12
79	STRUCTURES AND ELECTRIC FIELD EFFECTS IN FERRO-, FERRI- AND ANTIFERRO-ELECTRIC LIQUID CRYSTAL DEVICES. Molecular Crystals and Liquid Crystals, 2003, 401, 97-109.	0.4	3
80	Optical Bragg Reflections from a Series of Antiferroelectric Hetrocyclic Esters. Ferroelectrics, 2002, 277, 153-167.	0.3	11
81	Elastic Constants of an Achiral Smectic-C Material. Ferroelectrics, 2002, 277, 35-45.	0.3	8
82	Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant. Liquid Crystals, 2002, 29, 19-26.	0.9	41
83	An electrically addressed liquid crystal filter for tunable lasers. Optics Communications, 2002, 212, 165-168.	1.0	5
84	The Synthesis and Mesomorphic Properties of Some Novel Antiferroelectric Liquid Crystals. Molecular Crystals and Liquid Crystals, 2001, 365, 213-220.	0.3	6
85	An Examination of the Drug Transport Properties of Liquid Crystal Embedded Membranes. Molecular Crystals and Liquid Crystals, 2001, 367, 435-443.	0.3	6
86	Effects of Pulsed Electric Fields on a Nematic Device with a Ferroelectric Ceramic Substrate. Molecular Crystals and Liquid Crystals, 2001, 368, 9-15.	0.3	1
87	Phase Behaviour of Polymer-Liquid Crystal and Polymer-Polymer Blends. Molecular Crystals and Liquid Crystals, 2001, 365, 297-304.	0.3	3
88	A Comparison of the Optical and Steric Tilt in Antiferroelectric Liquid Crystals. Molecular Crystals and Liquid Crystals, 1999, 330, 449-456.	0.3	1
89	A Study of Photochromic Azobenzene Liquid Crystals as Controlled Release Drug Delivery Systems. Molecular Crystals and Liquid Crystals, 1999, 331, 375-382.	0.3	8
90	The Interaction of Poled Thin Film Ferroelectrics with Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 1999, 329, 491-498.	0.3	1

#	Article	IF	CITATIONS
91	Study of Optical Switching and Reorientation in Liquid Crystals of Homologous Series of 4-n-butyl-4′-n-alkoxyazobenzenes. Molecular Crystals and Liquid Crystals, 1998, 320, 433-444.	0.3	8
92	Evolution of irreversible layer deformations in FLC devices caused by high electric field treatment. Ferroelectrics, 1998, 214, 35-42.	0.3	10
93	Time Resolved FT-IR Study of the Switching Dynamics of FLC Devices. Molecular Crystals and Liquid Crystals, 1997, 302, 41-46.	0.3	1
94	Heterocyclic Esters Exhibiting Frustrated Liquid Crystal Phases. Molecular Crystals and Liquid Crystals, 1997, 299, 19-25.	0.3	43
95	Novel Features in Blue Phase Kossel Diagrams. Molecular Crystals and Liquid Crystals, 1997, 302, 145-150.	0.3	1
96	Apparatus for simultaneous observation of the electroâ€optic response and small angle xâ€ray scattering in liquid crystals. Review of Scientific Instruments, 1995, 66, 3563-3568.	0.6	13
97	Dielectric permittivity properties of a fulgide dye guest-host liquid crystal. Liquid Crystals, 1995, 19, 421-425.	0.9	30
98	Liquid crystal blue phases: stability, field effects and alignment. Liquid Crystals, 0, , 1-12.	0.9	13
99	From understanding structures in antiferro-ferri and ferroelelectric liquid crystals to an unusual electro-optic effect in a bent-core nematic; a celebration of innovative materials. Liquid Crystals, 0, , 1-10.	0.9	Ο