Jun Nakata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5981594/publications.pdf Version: 2024-02-01

Ι...Ν. Νακάτα

#	Article	IF	CITATIONS
1	The activated conformation of integrin β7 is a novel multiple myeloma–specific target for CAR T cell therapy. Nature Medicine, 2017, 23, 1436-1443.	30.7	105
2	Wilms Tumor Gene (WT1) Peptide–based Cancer Vaccine Combined With Gemcitabine for Patients With Advanced Pancreatic Cancer. Journal of Immunotherapy, 2014, 37, 105-114.	2.4	77
3	Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. International Journal of Cancer, 2016, 139, 1391-1401.	5.1	43
4	A phase I clinical study of a cocktail vaccine of Wilms' tumor 1 (WT1) HLA class I and II peptides for recurrent malignant glioma. Cancer Immunology, Immunotherapy, 2019, 68, 331-340.	4.2	37
5	Incidence and treatment strategy for disseminated adenovirus disease after haploidentical stem cell transplantation. Annals of Hematology, 2012, 91, 1305-1312.	1.8	34
6	Wilms' Tumor Gene 1 (WT1) Peptide Vaccine Therapy for Hematological Malignancies: From CTL Epitope Identification to Recent Progress in Clinical Studies Including a Cure-Oriented Strategy. Oncology Research and Treatment, 2017, 40, 682-690.	1.2	33
7	A Zbtb7a protoâ€oncogene as a novel target for miRâ€125a. Molecular Carcinogenesis, 2016, 55, 2001-2009.	2.7	31
8	WT1 peptideâ€based immunotherapy for advanced thymic epithelial malignancies. International Journal of Cancer, 2018, 142, 2375-2382.	5.1	26
9	Wilms tumour 1 peptide vaccine as a cureâ€oriented postâ€chemotherapy strategy for patients with acute myeloid leukaemia at high risk of relapse. British Journal of Haematology, 2018, 182, 287-290.	2.5	20
10	Syndecan-4 as a biomarker to predict clinical outcome for glioblastoma multiforme treated with WT1 peptide vaccine. Future Science OA, 2016, 2, FSO96.	1.9	15
11	Extremely strong infiltration of WT1-specific CTLs into mouse tumor by the combination vaccine with WT1-specific CTL and helper peptides. Oncotarget, 2018, 9, 36029-36038.	1.8	15
12	Establishment of a novel platform cell line for efficient and precise evaluation of T cell receptor functional avidity. Oncotarget, 2018, 9, 34132-34141.	1.8	14
13	An Immunocompetent Mouse Model for MLL/AF9 Leukemia Reveals the Potential of Spontaneous Cytotoxic T-Cell Response to an Antigen Expressed in Leukemia Cells. PLoS ONE, 2015, 10, e0144594.	2.5	13
14	A case of immune recovery vitritis induced by donor leukocyte infusion for the treatment of cytomegalovirus retinitis. European Journal of Haematology, 2005, 75, 352-354.	2.2	10
15	Early detection of cytomegalovirus-specific cytotoxic T lymphocytes against cytomegalovirus antigenemia in human leukocyte antigen haploidentical hematopoietic stem cell transplantation. Annals of Hematology, 2015, 94, 1707-1715.	1.8	10
16	What should we tackle next in acute myeloid leukemia? Wilms tumor gene 1 vaccine therapy would be a promising and versatile strategy for acute myeloid leukemia. Expert Review of Hematology, 2019, 12, 211-213.	2.2	10
17	Identification of a Novel C-Terminal Truncated WT1 Isoform with Antagonistic Effects against Major WT1 Isoforms. PLoS ONE, 2015, 10, e0130578.	2.5	10
18	Selective targeting of multiple myeloma cells with a monoclonal antibody recognizing the ubiquitous protein CD98 heavy chain. Science Translational Medicine, 2022, 14, eaax7706.	12.4	10

Jun Nakata

#	Article	IF	CITATIONS
19	Vaccination strategies to improve outcome of hematopoietic stem cell transplant in leukemia patients: early evidence and future prospects. Expert Review of Hematology, 2014, 7, 671-681.	2.2	8
20	Cellular and Humoral Immune Responses Induced by an HLA Class I–restricted Peptide Cancer Vaccine Targeting WT1 Are Associated With Favorable Clinical Outcomes in Advanced Ovarian Cancer. Journal of Immunotherapy, 2022, 45, 56-66.	2.4	8
21	Different mechanisms causing loss of mismatched human leukocyte antigens in relapsing t(6;11)(q27;q23) acute myeloid leukemia after haploidentical transplantation. European Journal of Haematology, 2012, 89, 497-500.	2.2	7
22	Two distinct effector memory cell populations of WT1 (Wilms' tumor gene 1)-specific cytotoxic T lymphocytes in acute myeloid leukemia patients. Cancer Immunology, Immunotherapy, 2015, 64, 791-804.	4.2	7
23	Low incidence of HHVâ€6 reactivation in haploidentical hematopoietic stem cell transplantation with corticosteroid as graftâ€vsâ€host disease prophylaxis compared with cord blood transplantation. Transplant Infectious Disease, 2019, 21, e13073.	1.7	7
24	Transduction of a novel HLA-DRB1*04:05-restricted, WT1-specific TCR gene into human CD4+ T cells confers killing activity against human leukemia cells. Anticancer Research, 2015, 35, 1251-61.	1.1	7
25	Wilms tumor 1 peptide vaccination after hematopoietic stem cell transplant in leukemia patients. Stem Cell Investigation, 2016, 3, 90-90.	3.0	6
26	Glycosylation Status of CD43 Protein Is Associated with Resistance of Leukemia Cells to CTL-Mediated Cytolysis. PLoS ONE, 2016, 11, e0152326.	2.5	6
27	Identification of two distinct populations of WT1-specific cytotoxic T lymphocytes in co-vaccination of WT1 killer and helper peptides. Cancer Immunology, Immunotherapy, 2021, 70, 253-263.	4.2	6
28	Biased usage of T cell receptor βâ€chain variable region genes of Wilms' tumor gene (WT1)â€specific CD8 ⁺ T cells in patients with solid tumors and healthy donors. Cancer Science, 2012, 103, 408-414.	3.9	5
29	Reader‑free ELISPOT assay for immuno‑monitoring in peptide‑based cancer vaccine immunotherapy. Biomedical Reports, 2020, 12, 244-250.	2.0	5
30	Direct antiglobulin test-negative autoimmune hemolytic anemia associated with HLA-haploidentical stem cell transplantation. International Journal of Hematology, 2011, 93, 558-560.	1.6	3
31	Imaging Assessment of Tumor Response in the Era of Immunotherapy. Diagnostics, 2021, 11, 1041.	2.6	3
32	Identification of mouse helper epitopes for WT1-specific CD4+ T cells. Cancer Immunology, Immunotherapy, 2021, 70, 3323-3335.	4.2	3
33	WT1 epitopeâ€ʿspecific IgG and IgM antibodies for immuneâ€ʿmonitoring in patients with advanced sarcoma treated with a WT1 peptide cancer vaccine. Oncology Letters, 2022, 23, 65.	1.8	3
34	An Essential Role of the Avidity of T-Cell Receptor in Differentiation of Self-Antigen-reactive CD8+ T Cells. Journal of Immunotherapy, 2016, 39, 127-139.	2.4	2
35	Enhanced immune reaction resulting from co-vaccination of WT1 helper peptide assessed on PET-CT. Medicine (United States), 2020, 99, e22417.	1.0	2
36	Distinct difference in tumor-infiltrating immune cells between Wilms' tumor gene 1 peptide vaccine and anti-programmed cell death-1 antibody therapies. Neuro-Oncology Advances, 2021, 3, vdab091.	0.7	2

Jun Nakata

#	Article	IF	CITATIONS
37	Fatal progression of bronchiolitis obliterans in spite of complete remission of follicular lymphoma and paraneoplastic pemphigus. Annals of Hematology, 2021, , 1.	1.8	2
38	T Cell-Intrinsic Vitamin A Metabolism and Its Signaling Are Targets for Memory T Cell-Based Cancer Immunotherapy. Frontiers in Immunology, 0, 13, .	4.8	2
39	WT1 Peptide Vaccine for the Treatment of Malignancies: Its Development, Recent Progress, and Future Perspectives. , 2016, , 159-185.		1
40	Dasatinib-induced rapid regression and complete molecular remission of multiple subcutaneous tumours presenting as relapsed chronic myeloid leukaemia after cord blood transplantation. Leukemia Research, 2011, 35, 1658-1659.	0.8	0