## Munkhbayar Batmunkh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5981247/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Phosphorene and Phosphoreneâ€Based Materials – Prospects for Future Applications. Advanced<br>Materials, 2016, 28, 8586-8617.                                                                                                  | 11.1 | 378       |
| 2  | Surfaceâ€Halogenationâ€Induced Atomicâ€Site Activation and Local Charge Separation for Superb<br>CO <sub>2</sub> Photoreduction. Advanced Materials, 2019, 31, e1900546.                                                       | 11.1 | 343       |
| 3  | Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceramics International, 2013, 39, 6415-6425.                                | 2.3  | 185       |
| 4  | Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant. Powder Technology, 2013, 234, 132-140.                               | 2.1  | 142       |
| 5  | Thermal Conductivity of TiO <sub>2</sub> Nanoparticles Based Aqueous Nanofluids with an Addition of a Modified Silver Particle. Industrial & Engineering Chemistry Research, 2014, 53, 8445-8451.                              | 1.8  | 141       |
| 6  | Investigation of Al <sub>2</sub> O <sub>3</sub> -MWCNTs Hybrid Dispersion in<br>Water and Their Thermal Characterization. Journal of Nanoscience and Nanotechnology, 2012, 12,<br>4553-4559.                                   | 0.9  | 138       |
| 7  | Carbon Nanotubes for Dye-Sensitized Solar Cells. Small, 2015, 11, 2963-2989.                                                                                                                                                   | 5.2  | 122       |
| 8  | Black Phosphorus: Synthesis and Application for Solar Cells. Advanced Energy Materials, 2018, 8, 1701832.                                                                                                                      | 10.2 | 118       |
| 9  | Zinc–nickel–cobalt ternary hydroxide nanoarrays for high-performance supercapacitors. Journal of<br>Materials Chemistry A, 2019, 7, 11826-11835.                                                                               | 5.2  | 112       |
| 10 | Nanocarbons for mesoscopic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3,<br>9020-9031.                                                                                                                    | 5.2  | 104       |
| 11 | Nitrogenâ€Doped CN <i><sub>x</sub></i> /CNTs Heteroelectrocatalysts for Highly Efficient Dyeâ€Sensitized<br>Solar Cells. Advanced Energy Materials, 2017, 7, 1602276.                                                          | 10.2 | 102       |
| 12 | Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Materials Chemistry and Physics, 2013, 141, 636-642.                                                    | 2.0  | 101       |
| 13 | Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis. Journal of Materials Chemistry<br>A, 2020, 8, 15875-15883.                                                                                                  | 5.2  | 88        |
| 14 | Nearâ€Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Postâ€Synthesis Ligand Exchange,<br>and Applications in Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 5202-5224.                        | 7.2  | 86        |
| 15 | Carbon Nanotubes in TiO <sub>2</sub> Nanofiber Photoelectrodes for Highâ€Performance Perovskite<br>Solar Cells. Advanced Science, 2017, 4, 1600504.                                                                            | 5.6  | 83        |
| 16 | Highly Dispersed Ru Nanoparticles on Boronâ€Doped Ti <sub>3</sub> C <sub>2</sub> T <i><sub>x</sub></i><br>(MXene) Nanosheets for Synergistic Enhancement of Electrocatalytic Hydrogen Evolution. Small,<br>2021, 17, e2102218. | 5.2  | 83        |
| 17 | Recent Advances in Perovskiteâ€Based Buildingâ€Integrated Photovoltaics. Advanced Materials, 2020, 32,<br>e2000631.                                                                                                            | 11.1 | 80        |
| 18 | Emerging 2D Layered Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902253.                                                                                                                        | 10.2 | 79        |

Munkhbayar Batmunkh

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Solution processed graphene structures for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 2605-2616.                                                                                                          | 5.2  | 73        |
| 20 | Dyeâ€Sensitized Solar Cell Counter Electrodes Based on Carbon Nanotubes. ChemPhysChem, 2015, 16,<br>53-65.                                                                                                                        | 1.0  | 72        |
| 21 | Ti <sub>3</sub> C <sub>2</sub> T <i><sub>x</sub></i> (MXene)â€Silicon Heterojunction for Efficient<br>Photovoltaic Cells. Advanced Energy Materials, 2019, 9, 1901063.                                                            | 10.2 | 68        |
| 22 | Recent Advances in Applications of Sorted Singleâ€Walled Carbon Nanotubes. Advanced Functional<br>Materials, 2019, 29, 1902273.                                                                                                   | 7.8  | 67        |
| 23 | Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells. Small Methods, 2021, 5, e2000744.                                                                                                                         | 4.6  | 63        |
| 24 | Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes.<br>Nanoscale, 2018, 10, 22087-22139.                                                                                           | 2.8  | 62        |
| 25 | Doping Strategies in Sb <sub>2</sub> S <sub>3</sub> Thin Films for Solar Cells. Small, 2021, 17, e2100241.                                                                                                                        | 5.2  | 62        |
| 26 | Efficient and Fast Synthesis of Fewâ€Layer Black Phosphorus via Microwaveâ€Assisted Liquidâ€Phase<br>Exfoliation. Small Methods, 2017, 1, 1700260.                                                                                | 4.6  | 59        |
| 27 | Efficient Production of Phosphorene Nanosheets via Shear Stress Mediated Exfoliation for<br>Lowâ€Temperature Perovskite Solar Cells. Small Methods, 2019, 3, 1800521.                                                             | 4.6  | 58        |
| 28 | Unsaturated p-Metal-Based Metal–Organic Frameworks for Selective Nitrogen Reduction under<br>Ambient Conditions. ACS Applied Materials & Interfaces, 2020, 12, 44830-44839.                                                       | 4.0  | 58        |
| 29 | Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 4735-4739.                                                      | 5.2  | 57        |
| 30 | Microwave-assisted synthesis of black phosphorus quantum dots: efficient electrocatalyst for oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12974-12978.                                                   | 5.2  | 56        |
| 31 | Ruthenium( <scp>iii</scp> ) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. Journal of Materials Chemistry A, 2019, 7, 25433-25440.                                                        | 5.2  | 55        |
| 32 | Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 2020, 70, 104480.                                                                                                                        | 8.2  | 52        |
| 33 | Breaking Platinum Nanoparticles to Singleâ€Atomic Ptâ€C <sub>4</sub> Coâ€catalysts for Enhanced<br>Solarâ€ŧoâ€Hydrogen Conversion. Angewandte Chemie - International Edition, 2021, 60, 2541-2547.                                | 7.2  | 51        |
| 34 | Synthesis of a graphene–tungsten composite with improved dispersibility of graphene in an ethanol<br>solution and its use asÂa counter electrode for dye-sensitised solar cells. Journal of Power Sources,<br>2013, 230, 207-217. | 4.0  | 50        |
| 35 | Single-Walled Carbon Nanotubes Enhance the Efficiency and Stability of Mesoscopic Perovskite Solar<br>Cells. ACS Applied Materials & Interfaces, 2017, 9, 19945-19954.                                                            | 4.0  | 49        |
| 36 | Electrocatalytic Activity of a 2D Phosphoreneâ€Based Heteroelectrocatalyst for Photoelectrochemical<br>Cells. Angewandte Chemie - International Edition, 2018, 57, 2644-2647.                                                     | 7.2  | 48        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Origin of Performance Enhancement in TiO <sub>2</sub> arbon Nanotube Composite Perovskite Solar<br>Cells. Small Methods, 2019, 3, 1900164.                                                                                              | 4.6 | 45        |
| 38 | Photovoltaic performance of dye-sensitized solar cells with various MWCNT counter electrode structures produced by different coating methods. Electrochimica Acta, 2012, 80, 100-107.                                                   | 2.6 | 43        |
| 39 | Efficiency Enhancement of Singleâ€Walled Carbon Nanotubeâ€Silicon Heterojunction Solar Cells Using<br>Microwaveâ€Exfoliated Fewâ€Layer Black Phosphorus. Advanced Functional Materials, 2017, 27, 1704488.                              | 7.8 | 42        |
| 40 | Effect of functionalized MWCNTs/water nanofluids on thermal resistance and pressure fluctuation characteristics in oscillating heat pipe. International Communications in Heat and Mass Transfer, 2013, 48, 93-98.                      | 2.9 | 41        |
| 41 | Carbonaceous Dyeâ€Sensitized Solar Cell Photoelectrodes. Advanced Science, 2015, 2, 1400025.                                                                                                                                            | 5.6 | 39        |
| 42 | Plasmonic Gold Nanostars Incorporated into Highâ€Efficiency Perovskite Solar Cells. ChemSusChem,<br>2017, 10, 3750-3753.                                                                                                                | 3.6 | 39        |
| 43 | Rechargeable sunlight-promoted Zn-air battery constructed by bifunctional oxygen photoelectrodes:<br>Energy-band switching between ZnO/Cu2O and ZnO/CuO in charge-discharge cycles. Chemical<br>Engineering Journal, 2022, 433, 133559. | 6.6 | 39        |
| 44 | Incorporation of graphene into SnO2 photoanodes for dye-sensitized solar cells. Applied Surface<br>Science, 2016, 387, 690-697.                                                                                                         | 3.1 | 38        |
| 45 | Electrically Sorted Single-Walled Carbon Nanotubes-Based Electron Transporting Layers for<br>Perovskite Solar Cells. IScience, 2019, 14, 100-112.                                                                                       | 1.9 | 36        |
| 46 | Evolution of interfacial coupling interaction of Ni-Ru species for pH-universal water splitting.<br>Chemical Engineering Journal, 2021, 426, 130762.                                                                                    | 6.6 | 36        |
| 47 | An experimental study of the planetary ball milling effect on dispersibility and thermal conductivity of MWCNTs-based aqueous nanofluids. Materials Research Bulletin, 2012, 47, 4187-4196.                                             | 2.7 | 35        |
| 48 | Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass<br>loadings. Journal of Materials Chemistry A, 2019, 7, 23941-23948.                                                                 | 5.2 | 34        |
| 49 | Enhanced electrochemical production and facile modification of graphite oxide for cost-effective sodium ion battery anodes. Carbon, 2021, 177, 71-78.                                                                                   | 5.4 | 34        |
| 50 | 1Dâ€2D Synergistic MXeneâ€Nanotubes Hybrids for Efficient Perovskite Solar Cells. Small, 2021, 17,<br>e2101925.                                                                                                                         | 5.2 | 34        |
| 51 | Efficiency and stability enhancement of perovskite solar cells using reduced graphene oxide derived from earth-abundant natural graphite. RSC Advances, 2020, 10, 9133-9139.                                                            | 1.7 | 33        |
| 52 | Few-layer black phosphorus and boron-doped graphene based heteroelectrocatalyst for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 20446-20452.                                                                | 5.2 | 32        |
| 53 | Low-overpotential electrochemical ammonia synthesis using BiOCl-modified 2D titanium carbide MXene. Chinese Chemical Letters, 2022, 33, 394-398.                                                                                        | 4.8 | 30        |
| 54 | Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100598.                                                                                                   | 2.8 | 29        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | p-Type BP nanosheet photocatalyst with AQE of 3.9% in the absence of a noble metal cocatalyst:<br>investigation and elucidation of photophysical properties. Journal of Materials Chemistry A, 2018, 6,<br>18403-18408.             | 5.2 | 28        |
| 56 | Analysis of pressure fluctuations to evaluate thermal performance of oscillating heat pipe. Energy, 2014, 70, 135-142.                                                                                                              | 4.5 | 27        |
| 57 | Application of a hole transporting organic interlayer in graphene oxide/single walled carbon<br>nanotube–silicon heterojunction solar cells. Journal of Materials Chemistry A, 2017, 5, 8624-8634.                                  | 5.2 | 27        |
| 58 | Effect of grinding speed changes on dispersibility of the treated multi-walled carbon nanotubes in aqueous solution and its thermal characteristics. Chemical Engineering and Processing: Process Intensification, 2012, 61, 36-41. | 1.8 | 26        |
| 59 | Surface Engineering to Reduce the Interfacial Resistance for Enhanced Photocatalytic Water Oxidation. ACS Catalysis, 2020, 10, 8742-8750.                                                                                           | 5.5 | 26        |
| 60 | Sulfurâ€Doped Graphene with Iron Pyrite (FeS <sub>2</sub> ) as an Efficient and Stable Electrocatalyst<br>for the Iodine Reduction Reaction in Dyeâ€Sensitized Solar Cells. Solar Rrl, 2017, 1, 1700011.                            | 3.1 | 25        |
| 61 | Scalable Spray Drying Production of Amorphous V <sub>2</sub> O <sub>5</sub> –EGO 2D<br>Heterostructured Xerogels for Highâ€Rate and Highâ€Capacity Aqueous Zinc Ion Batteries. Small, 2022, 18,<br>e2105761.                        | 5.2 | 24        |
| 62 | TiO2 nanofiber photoelectrochemical cells loaded with sub-12Ânm AuNPs: Size dependent performance<br>evaluation. Materials Today Energy, 2018, 9, 254-263.                                                                          | 2.5 | 23        |
| 63 | A numerical investigation on LNG flow and heat transfer characteristic in heat exchanger.<br>International Journal of Heat and Mass Transfer, 2014, 68, 110-118.                                                                    | 2.5 | 21        |
| 64 | Sedimentation Study and Dispersion Behavior of Al <sub>2</sub> O <sub>3</sub> –H <sub>2</sub> O<br>Nanofluids with Dependence of Time. Advanced Science Letters, 2012, 6, 96-100.                                                   | 0.2 | 20        |
| 65 | Elemental 2D Materials: Solutionâ€Processed Synthesis and Applications in Electrochemical Ammonia<br>Production. Advanced Functional Materials, 2022, 32, 2107280.                                                                  | 7.8 | 20        |
| 66 | Insights into chemical doping to engineer the carbon nanotube/silicon photovoltaic heterojunction interface. Journal of Materials Chemistry A, 2017, 5, 24247-24256.                                                                | 5.2 | 16        |
| 67 | Experimental investigation of the mechanical grinding effect on graphene structure. RSC Advances, 2014, 4, 2495-2500.                                                                                                               | 1.7 | 15        |
| 68 | Pyramidâ€īextured Antireflective Silicon Surface In Graphene Oxide/Singleâ€Wall Carbon<br>Nanotube–Silicon Heterojunction Solar Cells. Energy and Environmental Materials, 2018, 1, 232-240.                                        | 7.3 | 13        |
| 69 | The Ball Milling with Various Rotation Speeds Assisted to Dispersion of the Multi-Walled Carbon<br>Nanotubes. Nanoscience and Nanotechnology Letters, 2012, 4, 20-29.                                                               | 0.4 | 13        |
| 70 | Effect of the collision medium size on thermal performance of silver nanoparticles based aqueous nanofluids. Composites Part B: Engineering, 2013, 54, 383-390.                                                                     | 5.9 | 11        |
| 71 | Tin Oxide Light‧cattering Layer for Titania Photoanodes in Dye‧ensitized Solar Cells. Energy<br>Technology, 2016, 4, 959-966.                                                                                                       | 1.8 | 11        |
| 72 | Synthesis of ultra-long hierarchical ZnO whiskers in a hydrothermal system for dye-sensitised solar cells. RSC Advances, 2016, 6, 109406-109413.                                                                                    | 1.7 | 10        |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A luminescent terbium coordination complex as multifunctional sensing platform. Talanta, 2020, 208, 120363.                                                                                                                                                            | 2.9 | 9         |
| 74 | Integrated Fullâ€&pectrum Solar Energy Catalysis for Zeroâ€Emission Ethylene Production from<br>Bioethanol. Advanced Functional Materials, 2022, 32, 2110026.                                                                                                          | 7.8 | 9         |
| 75 | Effects of macro and micro roughness in forced convective heat transfer. International<br>Communications in Heat and Mass Transfer, 2014, 50, 77-84.                                                                                                                   | 2.9 | 8         |
| 76 | Electrocatalytic Activity of a 2D Phosphoreneâ€Based Heteroelectrocatalyst for Photoelectrochemical<br>Cells. Angewandte Chemie, 2018, 130, 2674-2677.                                                                                                                 | 1.6 | 8         |
| 77 | Breaking Platinum Nanoparticles to Singleâ€Atomic Pt  4 Coâ€catalysts for Enhanced Solarâ€toâ€Hydrogen<br>Conversion. Angewandte Chemie, 2021, 133, 2571-2577.                                                                                                         | 1.6 | 8         |
| 78 | Application of Hole-Transporting Materials as the Interlayer in Graphene Oxide/Single-Wall Carbon<br>Nanotube Silicon Heterojunction Solar Cells. Australian Journal of Chemistry, 2017, 70, 1202.                                                                     | 0.5 | 7         |
| 79 | Ambient air synthesis of multi-layer CVD graphene films for low-cost, efficient counter electrode<br>material in dye-sensitized solar cells. FlatChem, 2018, 8, 1-8.                                                                                                   | 2.8 | 7         |
| 80 | Sulfur-Functionalized Titanium Carbide Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> (MXene)<br>Nanosheets Modified Light Absorbers for Ambient Fabrication of Sb <sub>2</sub> S <sub>3</sub> Solar<br>Cells. ACS Applied Nano Materials, 2022, 5, 12107-12116. | 2.4 | 7         |
| 81 | Facile Synthesis of Boron-Doped Reduced Electrochemical Graphene Oxide for Sodium Ion Battery<br>Anode. Jom, 2021, 73, 2531.                                                                                                                                           | 0.9 | 6         |
| 82 | Grinding characteristic of multi-walled carbon nanotubes-alumina composite particle. Journal<br>Wuhan University of Technology, Materials Science Edition, 2012, 27, 1009-1013.                                                                                        | 0.4 | 5         |
| 83 | Vortex Fluidics Improved Morphology of<br>CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3â€x</sub> CI <sub>x</sub> Films for Perovskite Solar Cells.<br>ChemistrySelect, 2017, 2, 369-374.                                                                                  | 0.7 | 5         |
| 84 | Smart Solar–Metal–Air Batteries Based on BiOCl Photocorrosion for Monolithic Solar Energy<br>Conversion and Storage. Small, 2022, 18, e2105668.                                                                                                                        | 5.2 | 5         |
| 85 | Use of Carbon Nanotubes in Third-Generation Solar Cells. , 2017, , 201-249.                                                                                                                                                                                            |     | 4         |
| 86 | Pt Nanocluster Co-Catalysts for Photocatalytic Water Splitting. Journal of Carbon Research, 2018, 4,<br>64.                                                                                                                                                            | 1.4 | 4         |
| 87 | Nahinfrarotaktive Bleichalkogenidâ€Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch<br>und Anwendungen in Solarzellen. Angewandte Chemie, 2019, 131, 5256-5279.                                                                                         | 1.6 | 4         |
| 88 | Fast and cost-effective room temperature synthesis of high quality graphene oxide with excellent structural intactness. Sustainable Materials and Technologies, 2020, 25, e00198.                                                                                      | 1.7 | 4         |
| 89 | Effect of N719–Dye Adsorption Into Composition of Different Sized TiO <sub>2</sub> Films for<br>Photovoltaic Performance of the Dye-Sensitized Solar Cells. Nanoscience and Nanotechnology<br>Letters, 2013, 5, 741-749.                                               | 0.4 | 4         |
| 90 | Laminated antimonene as an alternative and efficient shielding strategy against X-ray radiation. Applied Materials Today, 2022, 29, 101566.                                                                                                                            | 2.3 | 4         |

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Advances in Emerging Solar Cells. Nanomaterials, 2020, 10, 534.                                                                                                | 1.9 | 3         |
| 92 | Exfoliated 2D Antimoneneâ€Based Structures for Lightâ€Harvesting Photoactive Layer of Highly Stable<br>Solar Cells. Small Structures, 0, , 2200038.            | 6.9 | 2         |
| 93 | Solar Power: Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes (Adv. Sci. 3/2015). Advanced<br>Science, 2015, 2, .                                        | 5.6 | 0         |
| 94 | Back Cover: Solar RRL 3â€4â^•2017. Solar Rrl, 2017, 1, 1770113.                                                                                                | 3.1 | 0         |
| 95 | Cesium-Doped Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> MXene for Efficient and Thermally Stable<br>Perovskite Solar Cells. SSRN Electronic Journal, 0, , . | 0.4 | 0         |
| 96 | Grinding Characteristics of Metal Powders and Carbon Nanotubes(CNTs) during Various Ball Milling<br>Processes. , 2012, , .                                     |     | 0         |