Weihua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5981120/publications.pdf

Version: 2024-02-01

218592 189801 3,972 74 26 50 h-index citations g-index papers 74 74 74 2489 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges. Mechanical Systems and Signal Processing, 2022, 167, 108487.	4.4	304
2	Dual-Attention Generative Adversarial Networks for Fault Diagnosis Under the Class-Imbalanced Conditions. IEEE Sensors Journal, 2022, 22, 1474-1485.	2.4	32
3	Deep Self-Supervised Domain Adaptation Network for Fault Diagnosis of Rotating Machine With Unlabeled Data. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	3
4	Federated Transfer Learning for Bearing Fault Diagnosis With Discrepancy-Based Weighted Federated Averaging. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	2.4	28
5	Behavior Decision Model With Situation Assessment for Intelligent Vehicles Based on Vehicle-to-Everything Information. Transportation Research Record, 2022, 2676, 508-519.	1.0	2
6	Intelligent Cross-domain Fault Diagnosis For Rotating Machinery Using Multiscale Adversarial Convolutional Neural Network. , 2022, , .		2
7	Feature-Guided Spatial Attention Upsampling for Real-Time Stereo Matching Network. IEEE MultiMedia, 2021, 28, 38-47.	1.5	9
8	Deepâ€learningâ€based guided wave detection for liquidâ€level state in porcelain bushing type terminal. Structural Control and Health Monitoring, 2021, 28, .	1.9	21
9	A Two-Stage Transfer Adversarial Network for Intelligent Fault Diagnosis of Rotating Machinery With Multiple New Faults. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1591-1601.	3.7	109
10	Adaptive Robust Noise Modeling of Sparse Representation for Bearing Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	20
11	Deep Adversarial Capsule Network for Compound Fault Diagnosis of Machinery Toward Multidomain Generalization Task. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	71
12	A Novel Weighted Adversarial Transfer Network for Partial Domain Fault Diagnosis of Machinery. IEEE Transactions on Industrial Informatics, 2021, 17, 1753-1762.	7.2	110
13	A Global-Local Dynamic Adversarial Network for Intelligent Fault Diagnosis of Spindle Bearing. , 2021, ,		2
14	Simultaneous fault type and severity identification using a two-branch domain adaptation network. Measurement Science and Technology, 2021, 32, 094014.	1.4	9
15	Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	1.9	7
16	Enhanced generative adversarial network for extremely imbalanced fault diagnosis of rotating machine. Measurement: Journal of the International Measurement Confederation, 2021, 180, 109467.	2.5	47
17	Correction to: Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	1.9	0
18	Multiscale Convolutional Neural Network With Feature Alignment for Bearing Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	25

#	Article	IF	Citations
19	Federated Transfer Learning for Bearing Fault Diagnosis Based on Averaging Shared Layers. , 2021, , .		8
20	Federated Learning for Bearing Fault Diagnosis with Dynamic Weighted Averaging., 2021,,.		13
21	Dynamic modeling of Gearbox Based on Virtual-physical Interaction. , 2021, , .		1
22	Manifold Sparse Auto-Encoder for Machine Fault Diagnosis. IEEE Sensors Journal, 2020, 20, 8328-8335.	2.4	22
23	Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network. IEEE Transactions on Industrial Informatics, 2020, 16, 339-349.	7.2	197
24	Deep Ensemble Capsule Network for Intelligent Compound Fault Diagnosis Using Multisensory Data. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 2304-2314.	2.4	68
25	Intelligent Fault Diagnosis for Bearing Dataset Using Adversarial Transfer Learning based on Stacked Auto-Encoder. Procedia Manufacturing, 2020, 49, 75-80.	1.9	10
26	Generalized Gaussian Noise Distribution Enabled Sparse Representation Model for Bearing Fault Diagnosis. , 2020, , .		7
27	Guest Editorial Special Issue on Smart Sensing and Artificial Intelligence-Enabled Data Analytics for Health Monitoring of Engineering Systems. IEEE Sensors Journal, 2020, 20, 8203-8203.	2.4	4
28	Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery. Energy, 2020, 208, 118422.	4.5	7
29	Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 8702-8712.	2.4	158
30	Unsteady characteristic and flow mechanism of a scroll compressor with novel discharge port for electric vehicle air conditioning. International Journal of Refrigeration, 2020, 118, 403-414.	1.8	26
31	A Transferable Capsule Network for Decoupling Compound Fault of Machinery. , 2020, , .		7
32	A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks. Mechanical Systems and Signal Processing, 2020, 140, 106683.	4.4	285
33	A Deep Adversarial Transfer Learning Network for Machinery Emerging Fault Detection. IEEE Sensors Journal, 2020, 20, 8413-8422.	2.4	75
34	A Robust Weight-Shared Capsule Network for Intelligent Machinery Fault Diagnosis. IEEE Transactions on Industrial Informatics, 2020, 16, 6466-6475.	7.2	75
35	State-of-charge estimation of lithium-ion batteries using LSTM and UKF. Energy, 2020, 201, 117664.	4.5	204
36	Deep Semi-supervised Domain Generalization Network for Rotary Machinery Fault Diagnosis under Variable Speed. IEEE Transactions on Instrumentation and Measurement, 2020, , 1-1.	2.4	63

#	Article	IF	CITATIONS
37	Deep Feature-aligned Convolutional Neural Network for Machinery Fault Diagnosis. , 2020, , .		4
38	Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine. Mechanical Systems and Signal Processing, 2019, 133, 106272.	4.4	214
39	Deep Learning With Emerging New Labels for Fault Diagnosis. IEEE Access, 2019, 7, 6279-6287.	2.6	12
40	An Intelligent Compound Fault Diagnosis Method Using One-Dimensional Deep Convolutional Neural Network With Multi-Label Classifier. , 2019, , .		10
41	Space-time model and spectrum mechanism on vibration signal for planetary gear drive. Mechanical Systems and Signal Processing, 2019, 129, 164-185.	4.4	12
42	A triple acceleration method for topology optimization. Structural and Multidisciplinary Optimization, 2019, 60, 727-744.	1.7	28
43	Unsteady Flow Loss Mechanism and Aerodynamic Improvement of Two-Stage Turbine under Pulsating Conditions. Entropy, 2019, 21, 985.	1.1	5
44	Deep Decoupling Convolutional Neural Network for Intelligent Compound Fault Diagnosis. IEEE Access, 2019, 7, 1848-1858.	2.6	150
45	Bearing performance degradation assessment using long short-term memory recurrent network. Computers in Industry, 2019, 106, 14-29.	5.7	233
46	Characterization of two-stage turbine system under steady and pulsating flow conditions. Energy, 2018, 148, 407-423.	4.5	26
47	Electric vehicle battery temperature measuring method based on magnetic nanoparticles. , 2018, , .		0
48	Regrouping particle swarm optimization based variable neural network for gearbox fault diagnosis. Journal of Intelligent and Fuzzy Systems, 2018, 34, 3671-3680.	0.8	33
49	Frequency response model and mechanism for wind turbine planetary gear train vibration analysis. IET Renewable Power Generation, 2017, 11, 425-432.	1.7	42
50	Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 1693-1702.	2.4	670
51	Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery. Applied Energy, 2017, 185, 506-518.	5.1	44
52	Wavelet transform based convolutional neural network for gearbox fault classification., 2017,,.		20
53	Regrouping Particle Swarm Optimization-Based Neural Network for Bearing Fault Diagnosis. , 2017, , .		2
54	Bearing degradation assessment based on weibull distribution and deep belief network. , 2016, , .		22

#	Article	IF	Citations
55	Gearbox fault classification using S-transform and convolutional neural network., 2016,,.		15
56	Machine fault classification using deep belief network. , 2016, , .		27
57	Feature Denoising and Nearest–Farthest Distance Preserving Projection for Machine Fault Diagnosis. IEEE Transactions on Industrial Informatics, 2016, 12, 393-404.	7.2	96
58	A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique. Renewable Energy, 2016, 87, 364-375.	4.3	71
59	Bearing fault classification using firefly clustering. , 2015, , .		0
60	A Firefly Neural Network and Its Application in Bearing Fault Diagnosis. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2015, 51, 99.	0.7	11
61	Engine Misfire Condition Recognition Based on Nearest and Farthest Distance Preserving Projection. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2015, 51, 156.	0.7	0
62	Bearing Condition Recognition and Degradation Assessment under Varying Running Conditions Using NPE and SOM. Mathematical Problems in Engineering, 2014, 2014, 1-10.	0.6	15
63	Mathematical Methods and Modeling in Machine Fault Diagnosis. Mathematical Problems in Engineering, 2014, 2014, 1-3.	0.6	1
64	Semisupervised Distance-Preserving Self-Organizing Map for Machine-Defect Detection and Classification. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 869-879.	2.4	92
65	Envelope analysis by wavelet-filter based spectral kurtosis for bearing health monitoring. , 2013, , .		4
66	Gear incipient fault prognosis using Density-adjustable Spectral Clustering and Transductive SVM. , 2012, , .		1
67	Gearbox pitting detection using linear discriminant analysis and distance preserving self-organizing map. , 2012, , .		3
68	Fault diagnosis using rough sets and BP networks. , 2010, , .		0
69	Gear Incipient Fault Diagnosis Using Graph Theory and Transductive Support Vector Machine. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2010, 46, 82.	0.7	7
70	Anti-Noise Performance and Parameter Estimation Accuracy of FFT and FT Discrete Spectrum Correction., 2009,,.		1
71	GEARBOX CONDITION MONITORING USING FEATURE SAMPLES AND PRINCIPAL COMPONENT ANALYSIS. , 2008, , .		0
72	An approach for mechanical fault classification based on generalized discriminant analysis. Frontiers of Mechanical Engineering in China, 2006, 1, 292-298.	0.4	4

WEIHUA LI

#	Article	IF	CITATIONS
73	Feature extraction and classification of gear faults using principal component analysis. Journal of Quality in Maintenance Engineering, 2003, 9, 132-143.	1.0	52
74	KERNEL PRINCIPAL COMPONENT ANALYSIS AND ITS APPLICATION IN GEAR FAULT DIAGNOSIS. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2003, 39, 65.	0.7	14