Hans Ole Ã~rka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5980994/publications.pdf

Version: 2024-02-01

279798 233421 2,935 46 23 citations h-index papers

g-index 46 46 46 3152 docs citations times ranked citing authors all docs

45

#	Article	IF	CITATIONS
1	Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 2012, 121, 196-209.	11.0	553
2	Tree Species Classification in Boreal Forests With Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 2632-2645.	6.3	278
3	Inventory of Small Forest Areas Using an Unmanned Aerial System. Remote Sensing, 2015, 7, 9632-9654.	4.0	269
4	Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sensing of Environment, 2014, 140, 306-317.	11.0	222
5	Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sensing of Environment, 2009, 113, 1163-1174.	11.0	206
6	Tree species classification using airborne LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica, 2010, 44, .	1.3	195
7	Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning. Remote Sensing of Environment, 2012, 123, 443-456.	11.0	102
8	Range and AGC normalization in airborne discrete-return LiDAR intensity data for forest canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65, 369-379.	11.1	100
9	Biomass Estimation Using 3D Data from Unmanned Aerial Vehicle Imagery in a Tropical Woodland. Remote Sensing, 2016, 8, 968.	4.0	86
10	Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision. Remote Sensing of Environment, 2016, 175, 282-300.	11.0	77
11	Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning. Remote Sensing of Environment, 2010, 114, 1445-1461.	11.0	74
12	Characterizing forest species composition using multiple remote sensing data sources and inventory approaches. Scandinavian Journal of Forest Research, 2013, 28, 677-688.	1.4	65
13	Assessing 3D point clouds from aerial photographs for species-specific forest inventories. Scandinavian Journal of Forest Research, 2017, 32, 68-79.	1.4	65
14	Simultaneously acquired airborne laser scanning and multispectral imagery for individual tree species identification. Canadian Journal of Remote Sensing, 2012, 38, 125-138.	2.4	58
15	Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of size and shape on detection success rates. Journal of Archaeological Science, 2013, 40, 4688-4700.	2.4	57
16	Predicting stem diameters and aboveground biomass of individual trees using remote sensing data. Ecological Indicators, 2018, 85, 367-376.	6.3	49
17	Assessing forest inventory information obtained from different inventory approaches and remote sensing data sources. Annals of Forest Science, 2015, 72, 33-45.	2.0	46
18	Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories. Remote Sensing of Environment, 2019, 226, 26-37.	11.0	39

#	Article	IF	CITATIONS
19	Effects of forest structure and airborne laser scanning point cloud density on 3D delineation of individual tree crowns. European Journal of Remote Sensing, 2016, 49, 337-359.	3.5	38
20	Effects of UAV Image Resolution, Camera Type, and Image Overlap on Accuracy of Biomass Predictions in a Tropical Woodland. Remote Sensing, 2019, 11, 948.	4.0	36
21	Influence of Plot Size on Efficiency of Biomass Estimates in Inventories of Dry Tropical Forests Assisted by Photogrammetric Data from an Unmanned Aircraft System. Remote Sensing, 2017, 9, 610.	4.0	31
22	Subalpine zone delineation using LiDAR and Landsat imagery. Remote Sensing of Environment, 2012, 119, 11-20.	11.0	27
23	Individual tree crown approach for predicting site index in boreal forests using airborne laser scanning and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2017, 60, 72-82.	2.8	25
24	Discriminating between Native Norway Spruce and Invasive Sitka Spruceâ€"A Comparison of Multitemporal Landsat 8 Imagery, Aerial Images and Airborne Laser Scanner Data. Remote Sensing, 2016, 8, 363.	4.0	22
25	Tree Species Recognition Based on Airborne Laser Scanning and Complementary Data Sources. Managing Forest Ecosystems, 2014, , 135-156.	0.9	22
26	Prediction of Species-Specific Volume Using Different Inventory Approaches by Fusing Airborne Laser Scanning and Hyperspectral Data. Remote Sensing, 2017, 9, 400.	4.0	21
27	Can airborne laser scanning assist in mapping and monitoring natural forests?. Forest Ecology and Management, 2016, 369, 116-125.	3.2	18
28	Classifications of Forest Change by Using Bitemporal Airborne Laser Scanner Data. Remote Sensing, 2019, 11, 2145.	4.0	18
29	Modelling bird richness and bird species presence in a boreal forest reserve using airborne laser-scanning and aerial images. Bird Study, 2014, 61, 204-219.	1.0	17
30	Predicting Attributes of Regeneration Forests Using Airborne Laser Scanning. Canadian Journal of Remote Sensing, 2016, 42, 541-553.	2.4	15
31	Estimation of Forest Area and Canopy Cover Based on Visual Interpretation of Satellite Images in Ethiopia. Land, 2018, 7, 92.	2.9	14
32	Classifying tree and nontree echoes from airborne laser scanning in the forest–tundra ecotone. Canadian Journal of Remote Sensing, 2013, 38, 655-666.	2.4	13
33	Effects of terrain slope and aspect on the error of ALS-based predictions of forest attributes. Forestry, 2018, 91, 225-237.	2.3	13
34	Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia. Remote Sensing, 2020, 12, 3335.	4.0	12
35	Modelling Site Index in Forest Stands Using Airborne Hyperspectral Imagery and Bi-Temporal Laser Scanner Data. Remote Sensing, 2019, 11, 1020.	4.0	9
36	A framework for a forest ecological base map – An example from Norway. Ecological Indicators, 2022, 136, 108636.	6.3	9

#	Article	IF	CITATIONS
37	Unsupervised Selection of Training Samples for Tree Species Classification Using Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3560-3569.	4.9	6
38	Detection of Root, Butt, and Stem Rot presence in Norway spruce with hyperspectral imagery. Silva Fennica, 2022, 56, .	1.3	6
39	Land cover classification of treeline ecotones along a 1100 km latitudinal transect using spectralâ€and threeâ€dimensional information from <scp>UAV</scp> â€based aerial imagery. Remote Sensing in Ecology and Conservation, 2022, 8, 536-550.	4.3	6
40	Delineation of Geomorphological Woodland Key Habitats Using Airborne Laser Scanning. Remote Sensing, 2022, 14, 1184.	4.0	4
41	Countering Negative Effects of Terrain Slope on Airborne Laser Scanner Data Using Procrustean Transformation and Histogram Matching. Forests, 2017, 8, 401.	2.1	3
42	Wood Decay Detection in Norway Spruce Forests Based on Airborne Hyperspectral and ALS Data. Remote Sensing, 2022, 14, 1892.	4.0	3
43	Comparison of two algorithms for estimating stand-level changes and change indicators in a boreal forest in Norway. International Journal of Applied Earth Observation and Geoinformation, 2021, 98, 102316.	2.8	2
44	Consistent forest biomass stock and change estimation across stand, property, and landscape levels. Canadian Journal of Forest Research, 2021, 51, 848-858.	1.7	2
45	Detection of heartwood rot in Norway spruce trees with lidar and multi-temporal satellite data. International Journal of Applied Earth Observation and Geoinformation, 2022, 109, 102790.	1.9	2
46	Unsupervised selection of training plots and trees for tree species classification. , 2013, , .		0