List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5980875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a generalised equilibrium modified atmosphere model and its application to the Taleggio cheese. Journal of Food Engineering, 2022, 315, 110765.	5.2	2
2	Effects of the equilibrium atmosphere on Taleggio cheese storage in micro perforated packaging. LWT - Food Science and Technology, 2022, , 113464.	5.2	0
3	Smart Methylcellulose Hydrogels for pH-Triggered Delivery of Silver Nanoparticles. Gels, 2022, 8, 298.	4.5	13
4	Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials. Tissue Engineering - Part B: Reviews, 2021, 27, 486-513.	4.8	47
5	Graphene nanoplatelets composite membranes for thermal comfort enhancement in performance textiles. Journal of Applied Polymer Science, 2021, 138, 49645.	2.6	13
6	Compounded topographical and physicochemical cueing by micro-engineered chitosan substrates on rat dorsal root ganglion neurons and human mesenchymal stem cells. Soft Matter, 2021, 17, 5284-5302.	2.7	7
7	Dispersions of Zirconia Nanoparticles Close to the Phase Boundary of Surfactant-Free Ternary Mixtures. Langmuir, 2021, 37, 4072-4081.	3.5	5
8	Mesoporous zirconia surfaces with anti-biofilm properties for dental implants. Biomedical Materials (Bristol), 2021, 16, 045016.	3.3	6
9	Optimization of Cu and Zn co-doped PEO titania coatings produced in a novel borate-based electrolyte for biomedical applications. Materials Letters, 2021, 292, 129627.	2.6	3
10	Chemically Crosslinked Methylcellulose Substrates for Cell Sheet Engineering. Gels, 2021, 7, 141.	4.5	11
11	Influence of frequency and duty cycle on the properties of antibacterial borate-based PEO coatings on titanium for bone-contact applications. Applied Surface Science, 2021, 567, 150811.	6.1	14
12	Ca-doped zirconia mesoporous coatings for biomedical applications: A physicochemical and biological investigation. Journal of the European Ceramic Society, 2020, 40, 3698-3706.	5.7	8
13	Micro-Structured Patches for Dermal Regeneration Obtained via Electrophoretic Replica Deposition. Applied Sciences (Switzerland), 2020, 10, 5010.	2.5	5
14	A Multilayered Edible Coating to Extend Produce Shelf Life. ACS Sustainable Chemistry and Engineering, 2020, 8, 14312-14321.	6.7	46
15	Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels. Soft Matter, 2020, 16, 5577-5587.	2.7	12
16	Electrophoretic processing of chitosan based composite scaffolds with Nb-doped bioactive glass for bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 2020, 31, 43.	3.6	20
17	In-situ Raman spectroscopy: An effective technique for the quantification of LCST transition of methylcellulose hydrogels. Materials Letters, 2020, 274, 128011.	2.6	8
18	Monitoring metal ion leaching in oil-ZnO paint systems with a paramagnetic probe. Microchemical Journal, 2019, 151, 104256.	4.5	4

#	Article	IF	CITATIONS
19	Aging of Bioactive Glass-Based Foams: Effects on Structure, Properties, and Bioactivity. Materials, 2019, 12, 1485.	2.9	7
20	Nonlinear creep behaviour of glass fiber reinforced polypropylene: Impact of aging on stiffness degradation. Composites Part B: Engineering, 2019, 163, 702-709.	12.0	13
21	Electrophoretic bottom up design of chitosan patches for topical drug delivery. Journal of Materials Science: Materials in Medicine, 2019, 30, 40.	3.6	10
22	Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positiveâ€replica. Journal of Biomedical Materials Research - Part A, 2019, 107, 1455-1465.	4.0	12
23	Effect of food chemicals and temperature on mechanical reliability of bio-based glass fibers reinforced polyamide. Composites Part B: Engineering, 2019, 157, 140-149.	12.0	6
24	Improved functional performances of traditional artistic pottery by sol-gel nanoparticles deposition. Materials Research Express, 2019, 6, 025032.	1.6	0
25	Bactericidal activity of gallium-doped chitosan coatings against staphylococcal infection. Journal of Applied Microbiology, 2019, 126, 87-101.	3.1	15
26	Biopolymer-based strategies in the design of smart medical devices and artificial organs. International Journal of Artificial Organs, 2018, 41, 337-359.	1.4	54
27	Particle anisotropy and crystalline phase transition in one-pot synthesis of nano-zirconia: a causal relationship. CrystEngComm, 2018, 20, 879-888.	2.6	8
28	Chitosan-Based Trilayer Scaffold for Multitissue Periodontal Regeneration. Journal of Dental Research, 2018, 97, 303-311.	5.2	77
29	Bioactive Zn-doped hydroxyapatite coatings and their antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Surface and Coatings Technology, 2018, 352, 84-91.	4.8	60
30	Resorbability of a Bioglass®-based glass-ceramic scaffold produced via a powder metallurgy approach. Ceramics International, 2017, 43, 8625-8635.	4.8	9
31	Study of chemical environments for washing and descaling of food processing appliances: An insight in commercial cleaning products. Journal of Industrial and Engineering Chemistry, 2017, 53, 23-36.	5.8	15
32	Synthesis and characterization of scratch-resistant hybrid coatings based on non-hydrolytic sol-gel ZrO2 nanoparticles. Progress in Organic Coatings, 2017, 103, 60-68.	3.9	31
33	Effect of wear from cleaning operations on sintered ceramic surfaces: Correlation of surface properties data with touch perception and digital image processing. Wear, 2017, 390-391, 355-366.	3.1	9
34	Hierarchic micro-patterned porous scaffolds via electrochemical replica-deposition enhance neo-vascularization. Biomedical Materials (Bristol), 2016, 11, 025018.	3.3	27
35	Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine Sponges. Annals of Biomedical Engineering, 2016, 44, 1881-1893.	2.5	35
36	Biomanufacturing of a Chitosan/Collagen Scaffold to Drive Adhesion and Alignment of Human Cardiomyocyte Derived from Stem Cells. Procedia CIRP, 2016, 49, 113-120.	1.9	21

#	Article	IF	CITATIONS
37	Flexible hybrid coatings with efficient antioxidation properties. Food Packaging and Shelf Life, 2016, 10, 106-114.	7.5	7
38	Study of the mechanical stability and bioactivity of Bioglass [®] based glass-ceramic scaffolds produced via powder metallurgy-inspired technology. Biomedical Materials (Bristol), 2016, 11, 015005.	3.3	19
39	Dynamic Behavior of Vertically Aligned Carbon Nanotube Foams With Patterned Microstructure. Advanced Engineering Materials, 2015, 17, 1470-1479.	3.5	7
40	Polymeric Materials as Artificial Muscles: An Overview. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 1-9.	1.6	32
41	Physicochemical and nanomechanical investigation of electrodeposited chitosan:PEO blends. Journal of Materials Chemistry B, 2015, 3, 2641-2650.	5.8	13
42	Tribological and mechanical performance evaluation of metal prosthesis components manufactured via metal injection molding. Journal of Materials Science: Materials in Medicine, 2015, 26, 5332.	3.6	6
43	Comparative evaluation and optimization of off-the-shelf cationic polymers for gene delivery purposes. Polymer Chemistry, 2015, 6, 6325-6339.	3.9	32
44	Optimization of Chitosan-Based Scaffolds Obtained via Cathodic Polarization. Key Engineering Materials, 2015, 654, 154-158.	0.4	0
45	From Stiffness of Iron–Carbon Diagrams to Weakness of Sensoriality. , 2014, , 315-327.		0
46	Nanostructured Calcium Phosphates for Biomedical Applications. Key Engineering Materials, 2014, 604, 212-215.	0.4	3
47	Design of 2D chitosan scaffolds via electrochemical structuring. Biomatter, 2014, 4, e29506.	2.6	10
48	Suspension thermal spraying of hydroxyapatite: Microstructure and in vitro behaviour. Materials Science and Engineering C, 2014, 34, 287-303.	7.3	55
49	Geometryâ€Induced Mechanical Properties of Carbon Nanotube Foams. Advanced Engineering Materials, 2014, 16, 1026-1031.	3.5	10
50	Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: Synthesis, characterization, and photocatalytic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 261, 53-60.	3.9	61
51	Metal injection molding as enabling technology for the production of metal prosthesis components: Electrochemical and <i>in vitro</i> characterization. , 2013, 101, 1294-1301.		3
52	Site-Specific Quantification of Bone Quality Using Highly Nonlinear Solitary Waves. Journal of Biomechanical Engineering, 2012, 134, 101001.	1.3	41
53	We still have a Long Way to go to Effectively Deliver Genes!. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 82-91.	1.6	45
54	Preparation and Characterization of Shape Memory Polymer Scaffolds via Solvent Casting/Particulate Leaching. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 119-126.	1.6	26

#	Article	IF	CITATIONS
55	Nondestructive evaluation of orthopaedic implant stability in THA using highly nonlinear solitary waves. Smart Materials and Structures, 2012, 21, 012002.	3.5	58
56	Nonlinear viscoelasticity of freestanding and polymer-anchored vertically aligned carbon nanotube foams. Journal of Applied Physics, 2012, 111, 074314.	2.5	16
57	Titanium Oxide Modeling and Design for Innovative Biomedical Surfaces: A Concise Review. International Journal of Artificial Organs, 2012, 35, 629-641.	1.4	22
58	Titanium oxide modeling and design for innovative biomedical surfaces: a concise review. International Journal of Artificial Organs, 2012, 35, 629-641.	1.4	8
59	Electrochemically Deposited Gentamicin-Loaded Calcium phosphate Coatings for Bone Tissue Integration. International Journal of Artificial Organs, 2012, 35, 876-883.	1.4	7
60	Phase change material cellulosic composites for the cold storage of perishable products: From material preparation to computational evaluation. Applied Energy, 2012, 89, 339-346.	10.1	55
61	Morphology tuning of chitosan films via electrochemical deposition. Materials Letters, 2012, 78, 18-21.	2.6	34
62	Synthesis and Characterization of Carbon Nanotube–Polymer Multilayer Structures. ACS Nano, 2011, 5, 7713-7721.	14.6	46
63	Titanium Oxide Antibacterial Surfaces in Biomedical Devices. International Journal of Artificial Organs, 2011, 34, 929-946.	1.4	219
64	Use of the electro-mechanical impedance method for the assessment of dental implant stability. , 2011, ,		1
65	Microstructure and in vitro behaviour of 45S5 bioglass coatings deposited by high velocity suspension flame spraying (HVSFS). Journal of Materials Science: Materials in Medicine, 2011, 22, 1303-1319.	3.6	51
66	Interaction of highly nonlinear solitary waves with linear elastic media. Physical Review E, 2011, 83, 046606.	2.1	87
67	Assessment of dental implant stability by means of the electromechanical impedance method. Smart Materials and Structures, 2011, 20, 045008.	3.5	27
68	Trends in biomedical engineering: focus on Smart Bio-Materials and Drug Delivery. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 87-97.	0.4	9
69	Chemico-physical modifications induced by plasma and ozone sterilizations on shape memory polyurethane foams. Journal of Materials Science: Materials in Medicine, 2010, 21, 2067-2078.	3.6	32
70	Shape memory polymer foams for cerebral aneurysm reparation: Effects of plasma sterilization on physical properties and cytocompatibility. Acta Biomaterialia, 2009, 5, 1508-1518.	8.3	62
71	Different Processing Methods to Obtain Porous Structure in Shape Memory Polymers. Materials Science Forum, 2007, 539-543, 663-668.	0.3	6
72	New heparinizable modified poly(carbonate urethane) surfaces diminishing bacterial colonization. Journal of Materials Science: Materials in Medicine, 2007, 18, 2109-2115.	3.6	11

#	Article	IF	CITATIONS
73	Corrosion Behaviour of Nitinol Vascular Stents. Advances in Science and Technology, 2006, 49, 252-257.	0.2	3
74	Shape Memory Polymer Porous Structures for Mini-Invasive Surgical Procedures. , 2006, , .		2
75	Antibacterial Activity of Nano-Structured TiO ₂ Surfaces: a Preliminary in Vitro Study. , 0, , 163-172.		0