List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5980866/publications.pdf Version: 2024-02-01

SANC WON SUH

#	Article	IF	CITATIONS
1	Expression and Distribution of Free Zinc in Penile Erectile Tissue. World Journal of Men?s Health, 2023, 41, 155.	1.7	1
2	Administration of an Acidic Sphingomyelinase (ASMase) Inhibitor, Imipramine, Reduces Hypoglycemia-Induced Hippocampal Neuronal Death. Cells, 2022, 11, 667.	1.8	8
3	The Role of Zinc in Axon Formation via the mTORC1 Pathway. Molecular Neurobiology, 2022, 59, 3206-3217.	1.9	2
4	Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septal approach. Biomaterials, 2021, 266, 120413.	5.7	35
5	Phenotypic Discovery of Neuroprotective Agents by Regulation of Tau Proteostasis via Stressâ€Responsive Activation of PERK Signaling. Angewandte Chemie - International Edition, 2021, 60, 1831-1838.	7.2	12
6	The Effects of Atorvastatin on Global Cerebral Ischemia-Induced Neuronal Death. International Journal of Molecular Sciences, 2021, 22, 4385.	1.8	6
7	The Role of NADPH Oxidase in Neuronal Death and Neurogenesis after Acute Neurological Disorders. Antioxidants, 2021, 10, 739.	2.2	13
8	Transient Global Ischemia-Induced Brain Inflammatory Cascades Attenuated by Targeted Temperature Management. International Journal of Molecular Sciences, 2021, 22, 5114.	1.8	3
9	Association between 10-Year Atherosclerotic Cardiovascular Disease Risk and Vascular Endothelial Function in Patients with Vasospastic Angina. Cardiology, 2021, 146, 281-287.	0.6	1
10	Korean Red Ginseng Improves Astrocytic Mitochondrial Function by Upregulating HO-1-Mediated AMPKα–PGC-1α–ERRα Circuit after Traumatic Brain Injury. International Journal of Molecular Sciences, 2021, 22, 13081.	1.8	11
11	Zinc in the Brain: Friend or Foe?. International Journal of Molecular Sciences, 2020, 21, 8941.	1.8	53
12	Effects of Transient Receptor Potential Cation 5 (TRPC5) Inhibitor, NU6027, on Hippocampal Neuronal Death after Traumatic Brain Injury. International Journal of Molecular Sciences, 2020, 21, 8256.	1.8	12
13	Effects of Cerebrolysin on Hippocampal Neuronal Death After Pilocarpine-Induced Seizure. Frontiers in Neuroscience, 2020, 14, 568813.	1.4	12
14	Early-life stress induces EAAC1 expression reduction and attention-deficit and depressive behaviors in adolescent rats. Cell Death Discovery, 2020, 6, 73.	2.0	8
15	Role of Excitatory Amino Acid Carrier 1 (EAAC1) in Neuronal Death and Neurogenesis After Ischemic Stroke. International Journal of Molecular Sciences, 2020, 21, 5676.	1.8	5
16	The Transient Receptor Potential Melastatin 7 (TRPM7) Inhibitors Suppress Seizure-Induced Neuron Death by Inhibiting Zinc Neurotoxicity. International Journal of Molecular Sciences, 2020, 21, 7897.	1.8	18
17	Transient Receptor Potential Melastatin 2 (TRPM2) Inhibition by Antioxidant, N-Acetyl-l-Cysteine, Reduces Global Cerebral Ischemia-Induced Neuronal Death. International Journal of Molecular Sciences, 2020, 21, 6026.	1.8	12
18	A Novel Zinc Chelator, 1H10, Ameliorates Experimental Autoimmune Encephalomyelitis by Modulating Zinc Toxicity and AMPK Activation. International Journal of Molecular Sciences, 2020, 21, 3375.	1.8	6

#	Article	IF	CITATIONS
19	Changes in plasma lipoxin A4, resolvins and CD59 levels after ischemic and traumatic brain injuries in rats. Korean Journal of Physiology and Pharmacology, 2020, 24, 165.	0.6	7
20	An Inhibitor of the Sodium–Hydrogen Exchanger-1 (NHE-1), Amiloride, Reduced Zinc Accumulation and Hippocampal Neuronal Death after Ischemia. International Journal of Molecular Sciences, 2020, 21, 4232.	1.8	11
21	Zinc transporter 3 modulates cell proliferation and neuronal differentiation in the adult hippocampus. Stem Cells, 2020, 38, 994-1006.	1.4	22
22	Distinct dual roles of p-Tyr42 RhoA GTPase in tau phosphorylation and ATP citrate lyase activation upon different Al ² concentrations. Redox Biology, 2020, 32, 101446.	3.9	16
23	EAAC1 gene deletion reduces adult hippocampal neurogenesis after transient cerebral ischemia. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 1-S06-3.	0.0	Ο
24	Effects of transient receptor potential cation channel 5 (TRPC5) inhibition on global cerebral ischemia-induced neuronal death. IBRO Reports, 2019, 6, S219-S220.	0.3	0
25	Alcohol dependence treating agent, acamprosate, prevents traumatic brain injury-induced neuron death through vesicular zinc depletion. Translational Research, 2019, 207, 1-18.	2.2	24
26	Association Between Intra-arterial Invasive Central and Peripheral Blood Pressure and Endothelial Function (Assessed by Flow-Mediated Dilatation) in Stable Coronary Artery Disease. American Journal of Hypertension, 2019, 32, 953-959.	1.0	12
27	The Effects of Sodium Dichloroacetate on Mitochondrial Dysfunction and Neuronal Death Following Hypoglycemia-Induced Injury. Cells, 2019, 8, 405.	1.8	26
28	Transitions in Problematic Internet Use: A One-Year Longitudinal Study of Boys. Psychiatry Investigation, 2019, 16, 433-442.	0.7	9
29	Effects of glycemic variability and hyperglycemia in acute ischemic stroke on post-stroke cognitive impairments. Journal of Diabetes and Its Complications, 2018, 32, 682-687.	1.2	37
30	Administration of placenta-derived mesenchymal stem cells counteracts a delayed anergic state following a transient induction of endogenous neurogenesis activity after global cerebral ischemia. Brain Research, 2018, 1689, 63-74.	1.1	12
31	Acetylcholine precursor, citicoline (cytidine 5′â€diphosphocholine), reduces hypoglycaemiaâ€induced neuronal death in rats. Journal of Neuroendocrinology, 2018, 30, e12567.	1.2	12
32	Antimicrotubule Agent-Induced Zinc Neurotoxicity. Biological and Pharmaceutical Bulletin, 2018, 41, 1001-1005.	0.6	7
33	Carvacrol Attenuates Hippocampal Neuronal Death after Global Cerebral Ischemia via Inhibition of Transient Receptor Potential Melastatin 7. Cells, 2018, 7, 231.	1.8	23
34	Inhibition of NADPH Oxidase Activation by Apocynin Rescues Seizure-Induced Reduction of Adult Hippocampal Neurogenesis. International Journal of Molecular Sciences, 2018, 19, 3087.	1.8	26
35	Human Placenta-Derived Mesenchymal Stem Cells Reduce Mortality and Hematoma Size in a Rat Intracerebral Hemorrhage Model in an Acute Phase. Stem Cells International, 2018, 2018, 1-10. 	1.2	21
36	Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate. Stem Cells International, 2018, 2018, 1-9.	1.2	32

SANG WON SUH

#	Article	IF	CITATIONS
37	Combined Treatment With Dichloroacetic Acid and Pyruvate Reduces Hippocampal Neuronal Death After Transient Cerebral Ischemia. Frontiers in Neurology, 2018, 9, 137.	1.1	17
38	Protective Effects of Protocatechuic Acid on Seizure-Induced Neuronal Death. International Journal of Molecular Sciences, 2018, 19, 187.	1.8	21
39	Effects of Protocatechuic Acid (PCA) on Global Cerebral Ischemia-Induced Hippocampal Neuronal Death. International Journal of Molecular Sciences, 2018, 19, 1420.	1.8	58
40	EAAC1 gene deletion reduces adult hippocampal neurogenesis after transient cerebral ischemia. Scientific Reports, 2018, 8, 6903.	1.6	10
41	Clinical Meaning of the Ratio of Brachial Pre-Ejection Period to Brachial Ejection Time in Patients with Left Ventricular Systolic Dysfunction. International Heart Journal, 2018, 59, 566-572.	0.5	2
42	Effect of Adipose-Derived Mesenchymal Stem Cell Administration and Mild Hypothermia Induction on Delayed Neuronal Death After Transient Global Cerebral Ischemia. Critical Care Medicine, 2017, 45, e508-e515.	0.4	18
43	Prevention of hypoglycemia-induced hippocampal neuronal death by N-acetyl-l-cysteine (NAC). Amino Acids, 2017, 49, 367-378.	1.2	17
44	The cancer chemotherapeutic agent paclitaxel (Taxol) reduces hippocampal neurogenesis via down-regulation of vesicular zinc. Scientific Reports, 2017, 7, 11667.	1.6	28
45	Late treatment with choline alfoscerate (l-alpha glycerylphosphorylcholine, α-GPC) increases hippocampal neurogenesis and provides protection against seizure-induced neuronal death and cognitive impairment. Brain Research, 2017, 1654, 66-76.	1.1	52
46	[P2–265]: GLYCEMIC VARIABILITY IN ACUTE ISCHEMIC STROKE AND COGNITIVE OUTCOME. Alzheimer's and Dementia, 2017, 13, P715.	0.4	0
47	Unexpected Effects of Acetylcholine Precursors on Pilocarpine Seizure- Induced Neuronal Death. Current Neuropharmacology, 2017, 16, 51-58.	1.4	14
48	The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis. International Journal of Molecular Sciences, 2017, 18, 2070.	1.8	30
49	ZnT3 Gene Deletion Reduces Colchicine-Induced Dentate Granule Cell Degeneration. International Journal of Molecular Sciences, 2017, 18, 2189.	1.8	12
50	Administration of Protocatechuic Acid Reduces Traumatic Brain Injury-Induced Neuronal Death. International Journal of Molecular Sciences, 2017, 18, 2510.	1.8	27
51	Diverse Effects of an Acetylcholinesterase Inhibitor, Donepezil, on Hippocampal Neuronal Death after Pilocarpine-Induced Seizure. International Journal of Molecular Sciences, 2017, 18, 2311.	1.8	13
52	Administration of Zinc plus Cyclo-(His-Pro) Increases Hippocampal Neurogenesis in Rats during the Early Phase of Streptozotocin-Induced Diabetes. International Journal of Molecular Sciences, 2017, 18, 73.	1.8	9
53	Decreased cysteine uptake by EAAC1 gene deletion exacerbates neuronal oxidative stress and neuronal death after traumatic brain injury. Amino Acids, 2016, 48, 1619-1629.	1.2	21
54	2′-5′ oligoadenylate synthetase-like 1 (OASL1) deficiency suppresses central nervous system damage in a murine MOG-induced multiple sclerosis model. Neuroscience Letters, 2016, 628, 78-84.	1.0	6

SANG WON SUH

#	Article	IF	CITATIONS
55	Zinc transporter 3 (ZnT3) gene deletion reduces spinal cord white matter damage and motor deficits in a murine MOG-induced multiple sclerosis model. Neurobiology of Disease, 2016, 94, 205-212.	2.1	15
56	Zinc plus cyclo-(His-Pro) promotes hippocampal neurogenesis in rats. Neuroscience, 2016, 339, 634-643.	1.1	17
57	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
58	Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice. Journal of Neuroinflammation, 2015, 12, 104.	3.1	64
59	Cytidine 5′-diphosphocholine (CDP-choline) adversely effects on pilocarpine seizure-induced hippocampal neuronal death. Brain Research, 2015, 1595, 156-165.	1.1	13
60	Adipose-Derived Mesenchymal Stem Cells Reduce Neuronal Death After Transient Global Cerebral Ischemia Through Prevention of Blood-Brain Barrier Disruption and Endothelial Damage. Stem Cells Translational Medicine, 2015, 4, 178-185.	1.6	48
61	Melatonin Reduces Hypoglycemia-Induced Neuronal Death in Rats. Neuroendocrinology, 2015, 102, 300-310.	1.2	11
62	A Water-Ethanol Extract from the Willow Bracket Mushroom, Phellinus igniarius (Higher) Tj ETQq0 0 0 rgBT /Ove of Medicinal Mushrooms, 2015, 17, 879-889.	erlock 10 ⁻ 0.9	Tf 50 467 Td (7
63	A Mushroom Extract Piwep fromPhellinus igniariusAmeliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord. BioMed Research International, 2014, 2014, 1-11.	0.9	8
64	EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice. International Journal of Molecular Sciences, 2014, 15, 19444-19457.	1.8	16
65	Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration. Metallomics, 2014, 6, 1513-1520.	1.0	10
66	Zinc chelation reduces traumatic brain injury-induced neurogenesis in the subgranular zone of the hippocampal dentate gyrus. Journal of Trace Elements in Medicine and Biology, 2014, 28, 474-481.	1.5	36
67	Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model. Neurobiology of Disease, 2013, 54, 382-391.	2.1	48
68	Post-treatment of an NADPH oxidase inhibitor prevents seizure-induced neuronal death. Brain Research, 2013, 1499, 163-172.	1.1	61
69	Impairment of Autophagic Flux Promotes Glucose Reperfusion-Induced Neuro2A Cell Death after Glucose Deprivation. PLoS ONE, 2013, 8, e76466.	1.1	18
70	Pyruvate Administration Reduces Recurrent/Moderate Hypoglycemia-Induced Cortical Neuron Death in Diabetic Rats. PLoS ONE, 2013, 8, e81523.	1.1	20
71	EAAC1 gene deletion alters zinc homeostasis and enhances cortical neuronal injury after transient cerebral ischemia in mice. Journal of Trace Elements in Medicine and Biology, 2012, 26, 85-88.	1.5	18
72	Prevention of Traumatic Brain Injury-Induced Neuron Death by Intranasal Delivery of Nicotinamide Adenine Dinucleotide. Journal of Neurotrauma, 2012, 29, 1401-1409.	1.7	52

SANG WON SUH

#	Article	IF	CITATIONS
73	Recurrent/moderate hypoglycemia induces hippocampal dendritic injury, microglial activation, and cognitive impairment in diabetic rats. Journal of Neuroinflammation, 2012, 9, 182.	3.1	74
74	Prevention of Acute/Severe Hypoglycemia-Induced Neuron Death by Lactate Administration. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1086-1096.	2.4	31
75	Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Brain Research, 2012, 1481, 49-58.	1.1	101
76	Zinc Chelation Reduces Hippocampal Neurogenesis after Pilocarpine-Induced Seizure. PLoS ONE, 2012, 7, e48543.	1.1	33
77	Facilitated Neurogenesis in the Developing Hippocampus After Intake of Theanine, an Amino Acid in Tea Leaves, and Object Recognition Memory. Cellular and Molecular Neurobiology, 2011, 31, 1079-1088.	1.7	37
78	Nâ€acetylcysteine prevents loss of dopaminergic neurons in the <i>EAAC1</i> ^{â^'/â^'} mouse. Annals of Neurology, 2011, 69, 509-520.	2.8	120
79	Hyperglycemia promotes tissue plasminogen activatorâ€induced hemorrhage by Increasing superoxide production. Annals of Neurology, 2011, 70, 583-590.	2.8	121
80	Nuclear Factor Erythroid 2-Related Factor 2 Facilitates Neuronal Glutathione Synthesis by Upregulating Neuronal Excitatory Amino Acid Transporter 3 Expression. Journal of Neuroscience, 2011, 31, 7392-7401.	1.7	86
81	Astrocytic poly(ADPâ€ribose) polymeraseâ€1 activation leads to bioenergetic depletion and inhibition of glutamate uptake capacity. Glia, 2010, 58, 446-457.	2.5	34
82	Prevention of Hypoglycemia-Induced Neuronal Death by Hypothermia. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 390-402.	2.4	23
83	EAAC1 Gene Deletion Alters Zinc Homeostasis and Exacerbates Neuronal Injury after Transient Cerebral Ischemia. Journal of Neuroscience, 2010, 30, 15409-15418.	1.7	43
84	Decreased Brain Zinc Availability Reduces Hippocampal Neurogenesis in Mice and Rats. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1579-1588.	2.4	127
85	Inhibition of Poly(ADP-Ribose) Polymerase Suppresses Inflammation and Promotes Recovery after Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 820-829.	2.4	81
86	NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nature Neuroscience, 2009, 12, 857-863.	7.1	466
87	Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation. Journal of Neuroscience Methods, 2009, 177, 1-13.	1.3	16
88	Role of zinc in hypoglycemia-induced neuron death. Future Neurology, 2009, 4, 799-809.	0.9	0
89	Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice. BioMetals, 2008, 21, 151-158.	1.8	22
90	Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Annals of Neurology, 2008, 64, 654-663.	2.8	246

#	Article	IF	CITATIONS
91	Sequential Release of Nitric Oxide, Zinc, and Superoxide in Hypoglycemic Neuronal Death. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1697-1706.	2.4	86
92	Zinc Triggers Microglial Activation. Journal of Neuroscience, 2008, 28, 5827-5835.	1.7	157
93	Astrocyte Glycogen Sustains Neuronal Activity during Hypoglycemia: Studies with the Glycogen Phosphorylase Inhibitor CP-316,819 ([R-R*,S*]-5-Chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamid Iournal of Pharmacology and Experimental Therapeutics. 2007. 321. 45-50.	e <mark>1</mark> .3	162
94	Use of a Poly(ADP-Ribose) Polymerase Inhibitor to Suppress Inflammation and Neuronal Death After Cerebral Ischemia-Reperfusion. Stroke, 2007, 38, 632-636.	1.0	100
95	Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. Journal of Clinical Investigation, 2007, 117, 910-918.	3.9	343
96	Zinc Inhibits Astrocyte Glutamate Uptake by Activation of Poly(ADP-ribose) Polymerase-1. Molecular Medicine, 2007, 13, 344-349.	1.9	35
97	Hypoglycemia, brain energetics, and hypoglycemic neuronal death. Glia, 2007, 55, 1280-1286.	2.5	175
98	Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. Journal of Neurochemistry, 2007, 102, 1383-1394.	2.1	104
99	Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nature Neuroscience, 2006, 9, 119-126.	7.1	430
100	Neurotoxic Zinc Translocation into Hippocampal Neurons is Inhibited by Hypothermia and is Aggravated by Hyperthermia after Traumatic Brain Injury in Rats. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 161-169.	2.4	49
101	Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7136-7141.	3.3	194
102	Acidosis Causes Endoplasmic Reticulum Stress and Caspase-12-Mediated Astrocyte Death. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 358-370.	2.4	66
103	Poly(ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. Journal of Neuroscience Research, 2005, 81, 190-198.	1.3	46
104	Pyruvate Administered After Severe Hypoglycemia Reduces Neuronal Death and Cognitive Impairment. Diabetes, 2005, 54, 1452-1458.	0.3	122
105	Hypoglycemia Induces Transient Neurogenesis and Subsequent Progenitor Cell Loss in the Rat Hippocampus. Diabetes, 2005, 54, 500-509.	0.3	51
106	Adrenalectomy-induced ZnT3 downregulation in mouse hippocampus is followed by vesicular zinc depletion. Neuroscience Letters, 2005, 377, 164-169.	1.0	9
107	Free radical generation is involved in hypoglycemia-induced neuronal death. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S489-S489.	2.4	0
108	Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiology of Disease, 2004, 16, 538-545.	2.1	101

#	Article	IF	CITATIONS
109	Hypoglycemic Neuronal Death and Cognitive Impairment Are Prevented by Poly(ADP-Ribose) Polymerase Inhibitors Administered after Hypoglycemia. Journal of Neuroscience, 2003, 23, 10681-10690.	1.7	194
110	Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7705-7710.	3.3	409
111	Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience, 2002, 115, 471-474.	1.1	68
112	Fluorescent zinc indicators for neurobiology. Journal of Neuroscience Methods, 2002, 118, 63-75.	1.3	114
113	Mild Hypothermia Reduces Zinc Translocation, Neuronal Cell Death, and Mortality after Transient Global Ischemia in Mice. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1231-1238.	2.4	36
114	Rapid Translocation of Zn ²⁺ From Presynaptic Terminals Into Postsynaptic Hippocampal Neurons After Physiological Stimulation. Journal of Neurophysiology, 2001, 86, 2597-2604.	0.9	246
115	Loss of vesicular zinc and appearance of perikaryal zinc after seizures induced by pilocarpine. NeuroReport, 2001, 12, 1523-1525.	0.6	52
116	Adrenalectomy causes loss of zinc ions in zinc-enriched (ZEN) terminals and decreases seizure-induced neuronal death. Brain Research, 2001, 895, 25-32.	1.1	16
117	Release of synaptic zinc is substantially depressed by conventional brain slice preparations. Brain Research, 2000, 879, 7-12.	1.1	35
118	Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Research, 2000, 852, 268-273.	1.1	284
119	Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains. Brain Research, 2000, 852, 274-278.	1.1	345
120	Importance of Zinc in the Central Nervous System: The Zinc-Containing Neuron. Journal of Nutrition, 2000, 130, 1471S-1483S.	1.3	720
121	Detection of Pathological Zinc Accumulation In Neurons: Methods for Autopsy, Biopsy, and Cultured Tissue. Journal of Histochemistry and Cytochemistry, 1999, 47, 969-972.	1.3	33
122	The Role of Zinc in Selective Neuronal Death After Transient Global Cerebral Ischemia. Science, 1996, 272, 1013-1016.	6.0	1,007
123	Pancreatic Exocrine Secretion in Response to Median Raphe Stimulation in Anesthetized Rats. Pancreas, 1995, 10, 407-412.	0.5	4