## Chenyang Zha

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5980548/publications.pdf

Version: 2024-02-01

346980 388640 1,402 39 22 h-index citations papers

g-index 39 39 39 2540 docs citations times ranked citing authors all docs

36

| #  | Article                                                                                                                                                                                                                                                          | IF         | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 1  | Electrodeposition of a dendriteâ€free 3D Al anode for improving cycling of an aluminum–graphite battery. , 2022, 4, 155-169.                                                                                                                                     |            | 16        |
| 2  | <i>In situ</i> tailored strategy to remove capping agents from copper sulfide for building better lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 4015-4023.                                                                               | 5.2        | 7         |
| 3  | Single-atom tailoring of Li2S to Form Li2S2 for building better lithium-sulfur batteries. Energy<br>Storage Materials, 2022, 47, 79-86.                                                                                                                          | 9.5        | 18        |
| 4  | The presolvation strategy of Li <sub>2</sub> S cathodes for lithium–sulfur batteries: a review. Journal of Materials Chemistry A, 2022, 10, 10326-10341.                                                                                                         | <b>5.2</b> | 17        |
| 5  | High electrochemical activity of Li2S2 linking two-dimensional tungsten boride nanosheet enables high-loading and long-lasting lithium-sulfur batteries. Materials Today Energy, 2022, 25, 100970.                                                               | 2.5        | 7         |
| 6  | Dynamic Reversible Evolution of Solid Electrolyte Interface in Nonflammable Triethyl Phosphate<br>Electrolyte Enabling Safe and Stable Potassium″on Batteries. Advanced Functional Materials, 2022, 32, .                                                        | 7.8        | 32        |
| 7  | Stimulating and Manipulating Robust Circularly Polarized Photoluminescence in Achiral Hybrid Perovskites. Nano Letters, 2022, 22, 3961-3968.                                                                                                                     | 4.5        | 13        |
| 8  | Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo <sub>2</sub> C/NCâ€Ru for highly efficient alkaline hydrogen evolution., 2022, 4, 856-866.                                                                      |            | 27        |
| 9  | Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries. Journal of Energy Chemistry, 2021, 52, 163-169.                                             | 7.1        | 28        |
| 10 | Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li2S6-based lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 59, 599-607.                                      | 7.1        | 26        |
| 11 | Self-limiting lithiation of vanadium diboride nanosheets as ultra-stable mediators towards high-sulfur loading and long-cycle lithium sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 3134-3142.                                                        | 2.5        | 10        |
| 12 | †Be water' strategy of liquid lithium sulfide enables 0.2ÂV potential barrier for high-performance lithium†sulfur batteries. Materials Today Energy, 2021, 21, 100793.                                                                                           | 2.5        | 8         |
| 13 | Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium–sulfur batteries. Energy Storage Materials, 2020, 26, 40-45. | 9.5        | 43        |
| 14 | Engineering the Phases and Heterostructures of Ultrathin Hybrid Perovskite Nanosheets. Advanced Materials, 2020, 32, e2002392.                                                                                                                                   | 11.1       | 25        |
| 15 | Borophene-like boron subunits-inserted molybdenum framework of MoB2 enables stable and quick-acting Li2S6-based lithium-sulfur batteries. Energy Storage Materials, 2020, 32, 216-224.                                                                           | 9.5        | 42        |
| 16 | Tuning optical properties of monolayer MoS2 through the OD/2D interfacial effect with C60 nanoparticles. Applied Surface Science, 2020, 523, 146371.                                                                                                             | 3.1        | 12        |
| 17 | The efficient redox electron transfer and powered polysulfide confinement of carbon doped tungsten nitride with multi-active sites towards high-performance lithium-polysulfide batteries. Applied Surface Science, 2020, 525, 146625.                           | 3.1        | 8         |
| 18 | Recent Advances in Two-Dimensional Magnets: Physics and Devices towards Spintronic Applications. Research, 2020, 2020, 1768918.                                                                                                                                  | 2.8        | 58        |

| #  | Article                                                                                                                                                                                                                                                                                      | IF          | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 19 | Interfacial active fluorine site-induced electron transfer on TiO <sub>2</sub> (001) facets to enhance polysulfide redox reactions for better liquid Li <sub>2</sub> S <sub>6</sub> -Based lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 6431-6438.                   | 5.2         | 45        |
| 20 | Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters. Journal of Energy Chemistry, 2019, 37, 93-96.                                                                                                                                                                         | 7.1         | 52        |
| 21 | Controlled chemical etching leads to efficient silicon–bismuth interface for photoelectrochemical CO2 reduction to formate. Materials Today Chemistry, 2019, 11, 80-85.                                                                                                                      | 1.7         | 31        |
| 22 | A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery. Energy Storage Materials, 2019, 17, 118-125.                                                                      | 9.5         | 72        |
| 23 | Li–CO <sub>2</sub> Batteries: Conjugated Cobalt Polyphthalocyanine as the Elastic and Reprocessable Catalyst for Flexible Li–CO <sub>2</sub> Batteries (Adv. Mater. 2/2019). Advanced Materials, 2019, 31, 1970014.                                                                          | 11.1        | 4         |
| 24 | Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental, 2019, 245, 656-661.                                                                                | 10.8        | 108       |
| 25 | Conjugated Cobalt Polyphthalocyanine as the Elastic and Reprocessable Catalyst for Flexible Li–CO <sub>2</sub> Batteries. Advanced Materials, 2019, 31, e1805484.                                                                                                                            | 11.1        | 112       |
| 26 | Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Energy Storage Materials, 2019, 16, 24-30.                                                                     | 9.5         | 52        |
| 27 | Rational Synthesis and Assembly of Ni <sub>3</sub> S <sub>4</sub> Nanorods for Enhanced Electrochemical Sodium-Ion Storage. ACS Nano, 2018, 12, 1829-1836.                                                                                                                                   | <b>7.</b> 3 | 104       |
| 28 | Highly reversible Na and K metal anodes enabled by carbon paper protection. Energy Storage Materials, 2018, 15, 8-13.                                                                                                                                                                        | 9.5         | 85        |
| 29 | Promoting polysulfide redox reactions and improving electronic conductivity in lithium–sulfur batteries ⟨i⟩via⟨ i⟩ hierarchical cathode materials of graphene-wrapped porous TiO⟨sub⟩2⟨ sub⟩ microspheres with exposed (001) facets. Journal of Materials Chemistry A, 2018, 6, 16574-16582. | 5.2         | 47        |
| 30 | Designing effective Si/Ag interface <i>via</i> controlled chemical etching for photoelectrochemical CO <sub>2</sub> reduction. Journal of Materials Chemistry A, 2018, 6, 21906-21912.                                                                                                       | 5.2         | 50        |
| 31 | Deeply Repairing Surface States with Wet Chemistry Methods: Enhanced Performance in TiO <sub>2</sub> Nanowire Arraysâ€Based Optoelectronic Device. ChemistrySelect, 2017, 2, 10971-10978.                                                                                                    | 0.7         | 10        |
| 32 | Three-dimensional nanocomposites of graphene/carbon nanotube matrix-embedded Si nanoparticles for superior lithium ion batteries. Advanced Materials Letters, 2017, 8, 206-211.                                                                                                              | 0.3         | 2         |
| 33 | Oneâ€Pot Synthesis of Pomegranateâ€Structured Fe <sub>3</sub> O <sub>4</sub> /Carbon<br>Nanospheresâ€Doped Graphene Aerogel for Highâ€Rate Lithium Ion Batteries. Chemistry - A European<br>Journal, 2016, 22, 4454-4459.                                                                    | 1.7         | 41        |
| 34 | Anisotropic growth and structure-dependent photoresponse activity of multi-level one-dimensional PbS nano-architectures. RSC Advances, 2016, 6, 62226-62235.                                                                                                                                 | 1.7         | 9         |
| 35 | Facet engineering of monodisperse PbS nanocrystals with shape- and facet-dependent photoresponse activity. RSC Advances, 2016, 6, 107151-107157.                                                                                                                                             | 1.7         | 22        |
| 36 | Double-Sided Brush-Shaped TiO <sub>2</sub> Nanostructure Assemblies with Highly Ordered Nanowires for Dye-Sensitized Solar Cells. ACS Applied Materials & Dye-Sensitized Solar Cells. ACS Applied Materials & Dye-Sensitized Solar Cells.                                                    | 4.0         | 59        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis of highly-ordered TiO2nanotube arrays with tunable sizes. Materials Research Express, 2014, 1, 035031.                                                                     | 0.8 | 5         |
| 38 | A minky-dot-fabric-shaped composite of porous TiO <sub>2</sub> microsphere/reduced graphene oxide for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 16931-16938. | 5.2 | 44        |
| 39 | Efficient Thermolysis Route to Monodisperse Cu2ZnSnS4 Nanocrystals with Controlled Shape and Structure. Scientific Reports, 2014, 4, 5086.                                           | 1.6 | 51        |