Olaf Erenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5980393/publications.pdf

Version: 2024-02-01

106 papers

5,791 citations

94433 37 h-index 70 g-index

107 all docs

107 docs citations

107 times ranked

4518 citing authors

#	Article	IF	CITATIONS
1	Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Climate Risk Management, 2017, 16, 183-194.	3.2	412
2	Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy, 2015, 42, 400-411.	5.6	356
3	Zero tillage impacts in India's rice–wheat systems: A review. Soil and Tillage Research, 2008, 100, 1-14.	5.6	272
4	Beyond conservation agriculture. Frontiers in Plant Science, 2015, 6, 870.	3.6	269
5	Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil and Tillage Research, 2002, 67, 115-133.	5.6	248
6	Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 458-463.	7.1	248
7	Conservation Agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crops Research, 2012, 132, 175-184.	5.1	231
8	Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Frontiers in Sustainable Food Systems, 2021, 4, .	3.9	222
9	Global maize production, consumption and trade: trends and R&D implications. Food Security, 2022, 14, 1295-1319.	5.3	200
10	Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop residues and cover crops. Agriculture, Ecosystems and Environment, 2003, 100, 17-37.	5.3	192
11	Production Risks and Food Security under Alternative Technology Choices in Malawi: Application of a Multinomial Endogenous Switching Regression. Journal of Agricultural Economics, 2015, 66, 640-659.	3.5	142
12	Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings. Journal of Rural Studies, 2016, 46, 155-168.	4.7	116
13	Conservation Agriculture in Maize- and Wheat-Based Systems in the (Sub)tropics: Lessons from Adaptation Initiatives in South Asia, Mexico, and Southern Africa. Agroecology and Sustainable Food Systems, 2012, 36, 180-206.	0.9	115
14	On-farm impacts of zero tillage wheat in South Asia's rice–wheat systems. Field Crops Research, 2008, 105, 240-252.	5.1	107
15	Viewpoint: Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Policy, 2021, 100, 101976.	6.0	101
16	Measuring Farm and Market Level Economic Impacts of Improved Maize Production Technologies in Ethiopia: Evidence from PanelÂData. Journal of Agricultural Economics, 2018, 69, 76-95.	3.5	95
17	Poverty mapping based on livelihood assets: A meso-level application in the Indo-Gangetic Plains, India. Applied Geography, 2010, 30, 112-125.	3.7	84
18	Factors affecting the adoption of multiple climateâ€smart agricultural practices in the Indoâ€Gangetic Plains of India. Natural Resources Forum, 2018, 42, 141-158.	3.6	80

#	Article	IF	CITATIONS
19	Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theoretical and Applied Climatology, 2017, 130, 959-970.	2.8	73
20	Weather index insurance for managing drought risk in smallholder agriculture: lessons and policy implications for sub-Saharan Africa. Agricultural and Food Economics, 2015, 3, .	3.2	71
21	Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia. Agricultural Systems, 2015, 134, 107-118.	6.1	71
22	Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Climate Risk Management, 2018, 19, 106-119.	3.2	68
23	Threat of wheat blast to South Asia's food security: An ex-ante analysis. PLoS ONE, 2018, 13, e0197555.	2.5	68
24	Impact of improved maize adoption on household food security of maize producing smallholder farmers in Ethiopia. Food Security, 2018, 10, 81-93.	5.3	63
25	Onâ€Farm Yield Gains with Stressâ€Tolerant Maize in Eastern and Southern Africa. Agronomy Journal, 2017, 109, 406-417.	1.8	60
26	Estimating the global number and distribution of maize and wheat farms. Global Food Security, 2021, 30, 100558.	8.1	59
27	Gendered food security in rural Malawi: why is women's food security status lower?. Food Security, 2015, 7, 1299-1320.	5.3	58
28	Maize stover use and sustainable crop production in mixed crop–livestock systems in Mexico. Field Crops Research, 2013, 153, 12-21.	5.1	57
29	Cropping systems and crop residue management in the Trans-Gangetic Plains: Issues and challenges for conservation agriculture from village surveys. Agricultural Systems, 2011, 104, 54-62.	6.1	54
30	Global Trends in Wheat Production, Consumption and Trade. , 2022, , 47-66.		52
31	Crop residue allocation to livestock feed, soil improvement and other uses along a productivity gradient in Eastern Africa. Agriculture, Ecosystems and Environment, 2016, 228, 101-110.	5.3	49
32	Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda. Land Use Policy, 2019, 88, 104091.	5.6	49
33	Enhancing Smallholder Access to Agricultural Machinery Services: Lessons from Bangladesh. Journal of Development Studies, 2017, 53, 1502-1517.	2.1	48
34	Understanding the relations between farmers' seed demand and research methods: The challenge to do better. Outlook on Agriculture, 2019, 48, 16-21.	3.4	47
35	Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe. Agricultural Systems, 2015, 134, 48-60.	6.1	46
36	Intensification or extensification? Factors affecting technology use in peri-urban lowlands along an agro-ecological gradient in West Africa. Agricultural Systems, 2006, 90, 132-158.	6.1	45

#	Article	IF	Citations
37	Tradeoffs around crop residue biomass in smallholder crop-livestock systems – What's next?. Agricultural Systems, 2015, 134, 119-128.	6.1	44
38	Crop–livestock interactions along agro-ecological gradients: a meso-level analysis in the Indo-Gangetic Plains, India. Environment, Development and Sustainability, 2010, 12, 669-689.	5.0	42
39	Resource saving and productivity enhancing impacts of crop management innovation packages in Ethiopia. Agricultural Economics (United Kingdom), 2016, 47, 513-522.	3.9	42
40	Understanding factors associated with agricultural mechanization: A Bangladesh case. World Development Perspectives, 2019, 13, 1-9.	2.0	40
41	Evolving food consumption patterns of rural and urban households in developing countries. British Food Journal, 2018, 120, 392-408.	2.9	39
42	Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda. Agricultural and Food Economics, 2019, 7, .	3.2	39
43	Livelihoods and agro-ecological gradients: A meso-level analysis in the Indo-Gangetic Plains, India. Agricultural Systems, 2011, 104, 42-53.	6.1	36
44	Determinants of maize stover utilization as feed, fuel and soil amendment in mixed crop-livestock systems, Ethiopia. Agricultural Systems, 2015, 134, 17-23.	6.1	34
45	A comparative analysis of rice–wheat systems in Indian Haryana and Pakistan Punjab. Land Use Policy, 2010, 27, 869-879.	5.6	33
46	Changing Food Consumption of Households in Developing Countries: A Bangladesh Case. Journal of International Food and Agribusiness Marketing, 2018, 30, 156-174.	2.1	32
47	THE PARADOX OF LIMITED MAIZE STOVER USE IN INDIA'S SMALLHOLDER CROP-LIVESTOCK SYSTEMS. Experimental Agriculture, 2011, 47, 677-704.	0.9	31
48	Rural transformation, cereals and youth in Africa: What role for international agricultural research?. Outlook on Agriculture, 2017, 46, 168-177.	3.4	29
49	Maize-Poultry Value Chains in India: Implications for Research and Development. Journal of New Seeds, 2009, 10, 245-263.	0.3	28
50	Laser-land leveling adoption and its impact on water use, crop yields and household income: Empirical evidence from the rice-wheat system of Pakistan Punjab. Food Policy, 2018, 77, 19-32.	6.0	28
51	Economic benefits of blast-resistant biofortified wheat in Bangladesh: The case of BARI Gom 33. Crop Protection, 2019, 123, 45-58.	2.1	28
52	Comparing water management in rice–wheat production systems in Haryana, India and Punjab, Pakistan. Agricultural Water Management, 2009, 96, 1799-1806.	5. 6	25
53	Maize lethal necrosis disease: Evaluating agronomic and genetic control strategies for Ethiopia and Kenya. Agricultural Systems, 2018, 162, 220-228.	6.1	25
54	Impact of direct rice-sowing technology on rice producers' earnings: empirical evidence from Pakistan. Development Studies Research, 2014, 1, 244-254.	1.9	24

#	Article	IF	CITATIONS
55	Wheat Production and Consumption Dynamics in an Asian Rice Economy: The Bangladesh Case. European Journal of Development Research, 2018, 30, 252-275.	2.3	24
56	Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia. International Journal of Climate Change Strategies and Management, 2019, 11, 570-591.	2.9	24
57	Funding International Agricultural Research and the Need to be Noticed. Outlook on Agriculture, 2008, 37, 159-168.	3.4	22
58	The Evolving Maize Sector in Asia: Challenges and Opportunities. Journal of New Seeds, 2010, 11, 1-15.	0.3	22
59	Social and income trade-offs of conservation agriculture practices on crop residue use in Mexico's central highlands. Agricultural Systems, 2015, 134, 61-75.	6.1	22
60	Demand for a laborâ€based drought insurance scheme in Ethiopia: a stated choice experiment approach. Agricultural Economics (United Kingdom), 2017, 48, 501-511.	3.9	22
61	Ethiopia's transforming wheat landscape: tracking variety use through DNA fingerprinting. Scientific Reports, 2020, 10, 18532.	3.3	22
62	Potential for dual-purpose maize varieties to meet changing maize demands: Synthesis. Field Crops Research, 2013, 153, 107-112.	5.1	21
63	Agricultural mechanization and reduced tillage: antagonism or synergy?. International Journal of Agricultural Sustainability, 2019, 17, 219-230.	3.5	21
64	Alternative use of wheat land to implement a potential wheat holiday as wheat blast control: In search of feasible crops in Bangladesh. Land Use Policy, 2019, 82, 1-12.	5.6	21
65	A SURVEY OF FACTORS ASSOCIATED WITH THE ADOPTION OF ZERO TILLAGE WHEAT IN THE IRRIGATED PLAINS OF SOUTH ASIA. Experimental Agriculture, 2009, 45, 133-147.	0.9	20
66	Seeding eastern Africa's maize revolution in the post-structural adjustment era: a review and comparative analysis of the formal maize seed sector. International Food and Agribusiness Management Review, 2018, 21, 39-52.	1.4	20
67	Factors determining the adoption of laser land leveling in the irrigated rice–wheat system in Haryana, India. Journal of Crop Improvement, 2018, 32, 477-492.	1.7	19
68	Smallholders' coping mechanisms with wheat rust epidemics: Lessons from Ethiopia. PLoS ONE, 2019, 14, e0219327.	2.5	19
69	Understanding clients, providers and the institutional dimensions of irrigation services in developing countries: A study of water markets in Bangladesh. Agricultural Water Management, 2019, 222, 242-253.	5. 6	19
70	Misidentification by farmers of the crop varieties they grow: Lessons from DNA fingerprinting of wheat in Ethiopia. PLoS ONE, 2020, 15, e0235484.	2.5	19
71	Predicting minimum tillage adoption among smallholder farmers using micro-level and policy variables. Agricultural and Food Economics, 2017, 5, .	3.2	18
72	Determinants of lowland use close to urban markets along an agro-ecological gradient in West Africa. Agriculture, Ecosystems and Environment, 2006, 117, 205-217.	5.3	16

#	Article	IF	Citations
73	Averting wheat blast by implementing a â€~wheat holiday': In search of alternative crops in West Bengal, India. PLoS ONE, 2019, 14, e0211410.	2.5	16
74	VILLAGE SURVEYS FOR TECHNOLOGY UPTAKE MONITORING: CASE OF TILLAGE DYNAMICS IN THE TRANS-GANGETIC PLAINS. Experimental Agriculture, 2010, 46, 277-292.	0.9	15
75	Role of staple cereals in human nutrition: Separating the wheat from the chaff in the infodemics age. Trends in Food Science and Technology, 2022, 119, 508-513.	15.1	15
76	Livelihood Assets as a Multidimensional Inverse Proxy for Poverty: A Districtâ€level Analysis of the Indian Indoâ€Gangetic Plains. Journal of Human Development and Capabilities, 2011, 12, 283-302.	2.0	14
77	Disaggregating the Value of Conservation Agriculture to Inform Smallholder Transition to Sustainable Farming: A Mexican Case Study. Agronomy, 2021, 11, 1214.	3.0	14
78	What future for integrated rice–vegetable production systems in West African lowlands?. Agricultural Systems, 2006, 88, 376-394.	6.1	13
79	Potential for dual-purpose maize varieties to meet changing maize demands: Overview. Field Crops Research, 2013, 153, 1-4.	5.1	13
80	Political and economic features of the maize seed industry in southern Africa. Agrekon, 2013, 52, 104-127.	1.3	13
81	Impact of irrigation water scarcity on rural household food security and income in Pakistan. Water Science and Technology: Water Supply, 2016, 16, 675-683.	2.1	12
82	Potential for Scaling up Climate Smart Agricultural Practices: Examples from Sub-Saharan Africa. Climate Change Management, 2017, , 185-203.	0.8	12
83	Specification effects in zero tillage survey data in South Asia's rice–wheat systems. Field Crops Research, 2009, 111, 166-172.	5.1	11
84	Impacts of changing weather patterns on smallholder well-being. International Journal of Climate Change Strategies and Management, 2017, 9, 225-240.	2.9	11
85	Assessing technological change in agri-food systems of the Global South: A review of adoption-impact studies in wheat. Outlook on Agriculture, 2020, 49, 89-98.	3.4	11
86	Projecting food demand in 2030: Can Uganda attain the zero hunger goal?. Sustainable Production and Consumption, 2021, 28, 1140-1163.	11.0	11
87	Assessing climate adaptation options for cereal-based systems in the eastern Indo-Gangetic Plains, South Asia. Journal of Agricultural Science, 2019, 157, 189-210.	1.3	10
88	Small businesses, potentially large impacts. Journal of Agribusiness in Developing and Emerging Economies, 2019, 9, 109-124.	2.0	10
89	Adoption and economic impacts of laser land leveling in the irrigated riceâ€wheat system in Haryana, India using endogenous switching regression. Natural Resources Forum, 2020, 44, 255-273.	3.6	9
90	Multiâ€Site Bundling of Drought Tolerant Maize Varieties and Index Insurance. Journal of Agricultural Economics, 2020, 71, 239-259.	3.5	8

#	Article	IF	CITATIONS
91	Resource Scarcity Gradients and Agricultural Technologies. Outlook on Agriculture, 2012, 41, 87-95.	3.4	7
92	Determinants of maize cultivation in a land-scarce rice-based economy: The case of Bangladesh. Journal of Crop Improvement, 2018, 32, 453-476.	1.7	7
93	Conservation Agriculture Benefits Indian Farmers, but Technology Targeting Needed for Greater Impacts. Frontiers in Agronomy, 2022, 4, .	3.3	7
94	Farms worldwide: 2020 and 2030 outlook. Outlook on Agriculture, 2021, 50, 221-229.	3.4	6
95	Continuing cereals research for sustainable health and well-being. International Journal of Agricultural Sustainability, 0 , 1 - 12 .	3 . 5	6
96	Rice Subsector Development and Farmer Efficiency in Nepal: Implications for Further Transformation and Food Security. Frontiers in Sustainable Food Systems, 2022, 5, .	3.9	6
97	Irrigation water saving through adoption of direct rice sowing technology in the Indo-Gangetic Plains: empirical evidence from Pakistan. Water Practice and Technology, 2016, 11, 610-620.	2.0	5
98	TRIANGULATING TECHNOLOGY DIFFUSION INDICATORS: ZERO TILLAGE WHEAT IN SOUTH ASIA'S IRRIGATED PLAINS. Experimental Agriculture, 2010, 46, 293-308.	0.9	4
99	Factors Affecting the Adoption of Zero Tillage Wheat in the Rice–Wheat Systems of India and Pakistan. Outlook on Agriculture, 2009, 38, 367-373.	3.4	3
100	Assessing the Impact of Adaptive Agricultural Research on Accelerating Technology Deployment. Outlook on Agriculture, 2010, 39, 121-126.	3.4	3
101	Impact of gender participation in non-farming activities on household income and poverty levels in Pakistan. Work, 2015, 52, 345-351.	1.1	3
102	Direct and spillover impacts of community-based seed production: Quasi-experimental evidence from Nepal. Experimental Agriculture, 2020, 56, 884-900.	0.9	3
103	Do market shocks generate gender-differentiated impacts? Policy implications from a quasi-natural experiment in Bangladesh. Women's Studies International Forum, 2019, 76, 102272.	1.1	2
104	ASSESSING INNOVATIONS LACKING DEVELOPED SUPPLY MARKETS: A SIMPLE EX ANTE MODEL APPLIED TO ROCK PHOSPHATE USE IN RICE IN WEST AFRICA. Experimental Agriculture, 2009, 45, 287-294.	0.9	1
105	Estimating farmers' internal value of crop residues in smallholder crop-livestock systems: A South Asia case study. Outlook on Agriculture, 0, , 003072702110395.	3.4	1
106	Livelihoods-based impact assessment in the rice–wheat farming system of South Asia. Development in Practice, 2010, 20, 933-945.	1.3	0