
Carmen Diaz-Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/598038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maritime Pine Genomics in Focus. Compendium of Plant Genomes, 2022, , 67-123.	0.5	4
2	Comprehensive analysis of the <scp>isomiRome</scp> in the vegetative organs of the conifer <scp><i>Pinus pinaster</i></scp> under contrasting water availability. Plant, Cell and Environment, 2021, 44, 706-728.	5.7	9
3	Adventitious Root Formation in Tree Species. Plants, 2021, 10, 486.	3.5	8
4	Rootstock effects on scion gene expression in maritime pine. Scientific Reports, 2021, 11, 11582.	3.3	12
5	Expression Levels of Genes Encoding Proteins Involved in the Cell Wall–Plasma Membrane–Cytoskeleton Continuum Are Associated With the Maturation-Related Adventitious Rooting Competence of Pine Stem Cuttings. Frontiers in Plant Science, 2021, 12, 783783.	3.6	5
6	Molecular study of drought response in the Mediterranean conifer <i>Pinus pinaster</i> Ait.: Differential transcriptomic profiling reveals constitutive water deficitâ€independent drought tolerance mechanisms. Ecology and Evolution, 2020, 10, 9788-9807.	1.9	19
7	A Perspective on Adventitious Root Formation in Tree Species. Plants, 2020, 9, 1789.	3.5	19
8	Effect of polar auxin transport and gibberellins on xylem formation in pine cuttings under adventitious rooting conditions. Israel Journal of Plant Sciences, 2020, 67, 27-39.	0.5	11
9	Cellular dynamics during maturationâ€related decline of adventitious root formation in forest tree species. Physiologia Plantarum, 2019, 165, 73-80.	5.2	34
10	Molecular Dissection of the Regenerative Capacity of Forest Tree Species: Special Focus on Conifers. Frontiers in Plant Science, 2018, 9, 1943.	3.6	31
11	Effect of different cryoprotectant procedures on the recovery and maturation ability of cryopreserved Pinus pinea embryogenic lines of different ages. In Vitro Cellular and Developmental Biology - Plant, 2017, 53, 469-477.	2.1	11
12	1,3-di(benzo[d]oxazol-5-yl)urea acts as either adventitious rooting adjuvant or xylogenesis enhancer in carob and pine microcuttings depending on the presence/absence of exogenous indole-3-butyric acid. Plant Cell, Tissue and Organ Culture, 2016, 126, 411-427.	2.3	22
13	Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenileââ,¬â€œadult transition. Frontiers in Plant Science, 2014, 5, 310.	3.6	48
14	The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots. BMC Plant Biology, 2014, 14, 354.	3.6	56
15	Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification. BMC Genomics, 2014, 15, 464.	2.8	64
16	Adventitious rooting adjuvant activity of 1,3-di(benzo[d]oxazol-5-yl)urea and 1,3-di(benzo[d]oxazol-6-yl)urea: new insights and perspectives. Plant Cell, Tissue and Organ Culture, 2014, 118, 111-124.	2.3	18
17	Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution, 2013, 3, 399-415.	1.9	271

18 The uniqueness of conifers. , 2013, , 67-96.

CARMEN DIAZ-SALA

#	Article	IF	CITATIONS
19	Towards decoding the conifer giga-genome. Plant Molecular Biology, 2012, 80, 555-569.	3.9	91
20	Gene expression patterns associated with developmental transitions during somatic embryogenesis in pine. BMC Proceedings, 2011, 5, .	1.6	0
21	Screening of genes associated with early stages of adventitious root formation from progenitor adult cells of pine. BMC Proceedings, 2011, 5, .	1.6	5
22	Expression pattern of the GRAS gene family during somatic embryogenesis in pine. BMC Proceedings, 2011, 5, .	1.6	4
23	Promoting a functional and comparative understanding of the conifer genome- implementing applied aspects for more productive and adapted forests (ProCoGen). BMC Proceedings, 2011, 5, .	1.6	2
24	Improvement of Eucalyptussp for biomass and bioenergy production in the north of Spain. BMC Proceedings, 2011, 5, .	1.6	0
25	CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells. Tree Physiology, 2011, 31, 1152-1160.	3.1	40
26	Reprogramming adult cells during organ regeneration in forest species. Plant Signaling and Behavior, 2009, 4, 793-795.	2.4	29
27	N,N′-bis-(2,3-Methylenedioxyphenyl)urea and N,N′-bis-(3,4-methylenedioxyphenyl)urea enhance adventitious rooting in Pinus radiata and affect expression of genes induced during adventitious rooting in the presence of exogenous auxin. Plant Science, 2008, 175, 356-363.	3.6	38
28	Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene. Tree Physiology, 2008, 28, 1629-1639.	3.1	63
29	Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. Tree Physiology, 2007, 27, 1459-1470.	3.1	108
30	Age- and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiology, 2002, 22, 507-513.	3.1	121
31	Age-related loss of rooting capability inArabidopsis thalianaand its reversal by peptides containing the Arg-Gly-Asp (RGD) motif. Physiologia Plantarum, 2002, 114, 601-607.	5.2	33
32	Expansins Are Conserved in Conifers and Expressed in Hypocotyls in Response to Exogenous Auxin1. Plant Physiology, 1999, 120, 827-832.	4.8	130
33	Free polyamine content in leaves and buds of hazelnut (Corylus avellana L. cv. Negret) trees subjected to repeated severe pruning. Scientia Horticulturae, 1998, 76, 115-121.	3.6	4
34	Differential Gene Expression During Maturation-Caused Decline in Adventitious Rooting Ability in Loblolly Pine (Pinus taeda L.). , 1997, , 203-208.		7
35	Maturation-related loss in rooting competence by loblolly pine stem cuttings: The role of auxin transport, metabolism and tissue sensitivity. Physiologia Plantarum, 1996, 97, 481-490.	5.2	90
36	Variations in the DNA methylation and polypeptide patterns of adult hazel (Corylus avellana L.) associated with sequential in vitro subcultures. Plant Cell Reports, 1995, 15, 218-221.	5.6	25

CARMEN DIAZ-SALA

#	Article	IF	CITATIONS
37	Comparison of endogenous polyamine content in hazel leaves and buds between the annual dormancy and flowering phases of growth. Physiologia Plantarum, 1994, 91, 45-50.	5.2	6
38	Exogenous polyamines improve rooting of hazel microshoots. Plant Cell, Tissue and Organ Culture, 1994, 36, 303-308.	2.3	19
39	Effect of repeated severe pruning on endogenous polyamine content in hazelnut trees. Physiologia Plantarum, 1994, 92, 487-492.	5.2	16
40	Comparison of endogenous polyamine content in hazel leaves and buds between the annual dormancy and flowering phases of growth. Physiologia Plantarum, 1994, 91, 45-50.	5.2	35
41	Endogenous polyamine concentrations in juvenile, adult and in vitro reinvigorated hazel. Tree Physiology, 1994, 14, 191-200.	3.1	26
42	Changes in Polyamines Related with Pruning as a Method for Rejuvenation in Filbert. , 1990, , 439-443.		0