
Daeshik Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5980064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soft Directional Adhesion Gripper Fabricated by 3D Printing Process for Gripping Flexible Printed Circuit Boards. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 1151-1163.	2.7	13
2	Artificial stretchable armor for skin-interfaced wearable devices and soft robotics. Extreme Mechanics Letters, 2022, 50, 101537.	2.0	15
3	Design of a Biologically Inspired Water-Walking Robot Powered by Artificial Muscle. Micromachines, 2022, 13, 627.	1.4	4
4	Functional Encapsulating Structure for Wireless and Immediate Monitoring of the Fluid Penetration. Advanced Functional Materials, 2022, 32, .	7.8	6
5	Actuating compact wearable augmented reality devices by multifunctional artificial muscle. Nature Communications, 2022, 13, .	5.8	24
6	Design of a Sensitive Balloon Sensor for Safe Human–Robot Interaction. Sensors, 2021, 21, 2163.	2.1	8
7	Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper. Science Robotics, 2021, 6, eabi6774.	9.9	38
8	Electroosmosis-Driven Hydrogel Actuators Using Hydrophobic/Hydrophilic Layer-By-Layer Assembly-Induced Crack Electrodes. ACS Nano, 2020, 14, 11906-11918.	7.3	31
9	Strainâ€Visualization with Ultrasensitive Nanoscale Crackâ€Based Sensor Assembled with Hierarchical Thermochromic Membrane. Advanced Functional Materials, 2019, 29, 1903360.	7.8	36
10	Uniaxially crumpled graphene as a platform for guided myotube formation. Microsystems and Nanoengineering, 2019, 5, 53.	3.4	26
11	Semipermanent Copper Nanowire Network with an Oxidationâ€Proof Encapsulation Layer. Advanced Materials Technologies, 2019, 4, 1800422.	3.0	29
12	FEP Encapsulated Crack-Based Sensor for Measurement in Moisture-Laden Environment. Materials, 2019, 12, 1516.	1.3	12
13	Design of Polarization-Independent and Wide-Angle Broadband Absorbers for Highly Efficient Reflective Structural Color Filters. Materials, 2019, 12, 1050.	1.3	13
14	Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy and Environmental Science, 2019, 12, 3182-3191.	15.6	136
15	Nature-inspired rollable electronics. NPG Asia Materials, 2019, 11, .	3.8	10
16	Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor. Sensors, 2019, 19, 5504.	2.1	26
17	Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational Medicine, 2018, 10, .	5.8	247
18	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. ACS Nano, 2018, 12, 4164-4171.	7.3	36

Daeshik Kang

#	Article	IF	CITATIONS
19	A semi-permanent and durable nanoscale-crack-based sensor by on-demand healing. Nanoscale, 2018, 10, 4354-4360.	2.8	52
20	Relation between blood pressure and pulse wave velocity for human arteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11144-11149.	3.3	193
21	Effect of Metal Thickness on the Sensitivity of Crack-Based Sensors. Sensors, 2018, 18, 2872.	2.1	22
22	Polyimide Encapsulation of Spider-Inspired Crack-Based Sensors for Durability Improvement. Applied Sciences (Switzerland), 2018, 8, 367.	1.3	41
23	Thin, Soft, Skinâ€Mounted Microfluidic Networks with Capillary Bursting Valves for Chrono‣ampling of Sweat. Advanced Healthcare Materials, 2017, 6, 1601355.	3.9	209
24	Ultra-sensitive Pressure sensor based on guided straight mechanical cracks. Scientific Reports, 2017, 7, 40116.	1.6	86
25	Microfluidic Networks: Thin, Soft, Skinâ€Mounted Microfluidic Networks with Capillary Bursting Valves for Chronoâ€&ling of Sweat (Adv. Healthcare Mater. 5/2017). Advanced Healthcare Materials, 2017, 6, .	3.9	3
26	Dry Transient Electronic Systems by Use of Materials that Sublime. Advanced Functional Materials, 2017, 27, 1606008.	7.8	34
27	Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands. Lab on A Chip, 2017, 17, 2572-2580.	3.1	117
28	Transient Electronics: Dry Transient Electronic Systems by Use of Materials that Sublime (Adv. Funct.) Tj ETQq0) 0 0 rgBT /(7.8	Overlock 10 T
29	Artificial Slanted Nanocilia Array as a Mechanotransducer for Controlling Cell Polarity. ACS Nano, 2017, 11, 730-741.	7.3	22
30	Metal–elastomer bilayered switches by utilizing the superexponential behavior of crack widening. Journal of Materials Chemistry C, 2017, 5, 10920-10925.	2.7	15
31	Photocurable PUA (Poly Urethaneacrylat) cantilever integrated with ultra-high sensitive crack-based sensor. , 2017, , .		1
32	Crack-based strain sensor with diverse metal films by inserting an inter-layer. RSC Advances, 2017, 7, 34810-34815.	1.7	51
33	Collapse of microfluidic channels/reservoirs in thin, soft epidermal devices. Extreme Mechanics Letters, 2017, 11, 18-23.	2.0	23
34	Directional Clustering of Slanted Nanopillars by Elastocapillarity. Small, 2016, 12, 3764-3769.	5.2	15
35	Nanoscale Sensors: Dramatically Enhanced Mechanosensitivity and Signalâ€toâ€Noise Ratio of Nanoscale Crackâ€Based Sensors: Effect of Crack Depth (Adv. Mater. 37/2016). Advanced Materials, 2016, 28, 8068-8068.	11.1	10
36	Transparent ITO mechanical crack-based pressure and strain sensor. Journal of Materials Chemistry C, 2016, 4, 9947-9953.	2.7	87

DAESHIK KANG

#	Article	IF	CITATIONS
37	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	5.8	933
38	Dramatically Enhanced Mechanosensitivity and Signalâ€ŧoâ€Noise Ratio of Nanoscale Crackâ€Based Sensors: Effect of Crack Depth. Advanced Materials, 2016, 28, 8130-8137.	11.1	276
39	Epidermal Systems: Soft Core/Shell Packages for Stretchable Electronics (Adv. Funct. Mater. 24/2015). Advanced Functional Materials, 2015, 25, 3697-3697.	7.8	6
40	Soft Core/Shell Packages for Stretchable Electronics. Advanced Functional Materials, 2015, 25, 3698-3704.	7.8	116
41	Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature, 2014, 516, 222-226.	13.7	1,196
42	Analysis of Preload-Dependent Reversible Mechanical Interlocking Using Beetle-Inspired Wing Locking Device. Langmuir, 2012, 28, 2181-2186.	1.6	27
43	Bioinspired Reversible Interlocker Using Regularly Arrayed High Aspectâ€Ratio Polymer Fibers. Advanced Materials, 2012, 24, 475-479.	11.1	92
44	Shapeâ€Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets. Advanced Materials, 2012, 24, 1709-1715.	11.1	85