Sebastian F Behrens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5979942/publications.pdf

Version: 2024-02-01

39 papers 3,828 citations

218381 26 h-index 288905 40 g-index

40 all docs

40 docs citations

40 times ranked

5023 citing authors

#	Article	IF	CITATIONS
1	Different Engineering Designs Have Profoundly Different Impacts on the Microbiome and Nitrifying Bacterial Populations in Municipal Wastewater Treatment Bioreactors. Applied and Environmental Microbiology, 2021, 87, e0104421.	1.4	5
2	Direct Evidence for Deterministic Assembly of Bacterial Communities in Full-Scale Municipal Wastewater Treatment Facilities. Applied and Environmental Microbiology, 2021, 87, e0108621.	1.4	5
3	Evaluating Quantitative PCR Assays to Enumerate Several Bacterial Populations of Importance in Different Municipal Wastewater Treatment Designs. Journal of Environmental Engineering, ASCE, 2021, 147, 04021044.	0.7	1
4	Tracking de novo protein synthesis in the activated sludge microbiome using BONCAT-FACS. Water Research, 2021, 205, 117696.	5.3	9
5	Microbial Community Composition in Municipal Wastewater Treatment Bioreactors Follows a Distance Decay Pattern Primarily Controlled by Environmental Heterogeneity. MSphere, 2021, 6, e0064821.	1.3	5
6	Deciphering the Variability of Stable Isotope (C, Cl) Fractionation of Tetrachloroethene Biotransformation by <i>Desulfitobacterium</i> strains Carrying Different Reductive Dehalogenases Enzymes. Environmental Science & Dehalogenases 2020, 54, 1593-1602.	4.6	10
7	Anaerobic Dehalogenation by Reduced Aqueous Biochars. Environmental Science & Technology, 2020, 54, 15142-15150.	4.6	11
8	Seasonal Dynamics of the Activated Sludge Microbiome in Sequencing Batch Reactors, Assessed Using 16S rRNA Transcript Amplicon Sequencing. Applied and Environmental Microbiology, 2020, 86, .	1.4	26
9	Composition and Dynamics of the Activated Sludge Microbiome during Seasonal Nitrification Failure. Scientific Reports, 2019, 9, 4565.	1.6	62
10	Insights into Carbon Metabolism Provided by Fluorescence <i>In Situ</i> Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture. Applied and Environmental Microbiology, 2018, 84, .	1.4	32
11	Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS. Applied and Environmental Microbiology, $2018,84,.$	1.4	46
12	Biochar affects community composition of nitrous oxide reducers in a field experiment. Soil Biology and Biochemistry, 2018, 119, 143-151.	4.2	46
13	Effect of biochar amendment on compost organic matter composition following aerobic composting of manure. Science of the Total Environment, 2018, 613-614, 20-29.	3.9	96
14	Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 2017, 8, 1089.	5.8	371
15	Soil biochar amendment affects the diversity of nosZ transcripts: Implications for N2O formation. Scientific Reports, 2017, 7, 3338.	1.6	55
16	Tillage system affects fertilizer-induced nitrous oxide emissions. Biology and Fertility of Soils, 2017, 53, 49-59.	2.3	37
17	Does soil aging affect the N ₂ O mitigation potential of biochar? A combined microcosm and field study. GCB Bioenergy, 2017, 9, 953-964.	2.5	65
18	Nitrate capture and slow release in biochar amended compost and soil. PLoS ONE, 2017, 12, e0171214.	1.1	128

#	Article	IF	CITATIONS
19	Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Scientific Reports, 2016, 6, 39574.	1.6	65
20	Ribosomal Tag Pyrosequencing of DNA and RNA Reveals "Rare―Taxa with High Protein Synthesis Potential in the Sediment of a Hypersaline Lake in Western Australia. Geomicrobiology Journal, 2016, 33, 426-440.	1.0	22
21	Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Science of the Total Environment, 2016, 562, 379-390.	3.9	117
22	A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Scientific Reports, 2016, 6, 28958.	1.6	51
23	Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS. Applied and Environmental Microbiology, 2016, 82, 2656-2668.	1.4	116
24	Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment. Applied and Environmental Microbiology, 2016, 82, 1433-1447.	1.4	76
25	Formation of chloroform and tetrachloroethene by <i>Sinorhizobium meliloti</i> strain 1021. Letters in Applied Microbiology, 2015, 61, 346-353.	1.0	7
26	Resiliency of Stable Isotope Fractionation (\hat{l} ¹³ C and \hat{l} ³⁷ Cl) of Trichloroethene to Bacterial Growth Physiology and Expression of Key Enzymes. Environmental Science & Emp; Technology, 2015, 49, 13230-13237.	4.6	19
27	Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Chemosphere, 2015, 138, 47-59.	4.2	84
28	Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri. Applied and Environmental Microbiology, 2015, 81, 2173-2181.	1.4	122
29	Secondary Mineral Formation During Ferrihydrite Reduction by <i>Shewanella oneidensis</i> MR-1 Depends on Incubation Vessel Orientation and Resulting Gradients of Cells, Fe ²⁺ and Fe Minerals. Geomicrobiology Journal, 2015, 32, 878-889.	1.0	23
30	Arsenic removal from drinking water by a household sand filter in Vietnam — Effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Science of the Total Environment, 2015, 502, 526-536.	3.9	50
31	Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME Journal, 2014, 8, 660-674.	4.4	484
32	The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 2014, 12, 797-808.	13.6	627
33	Comparison of Humic Substance- and Fe(III)-Reducing Microbial Communities in Anoxic Aquifers. Geomicrobiology Journal, 2014, 31, 917-928.	1.0	19
34	Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science and Technology Letters, 2014 , 1 , $339-344$.	3.9	432
35	Organic Carbon and Reducing Conditions Lead to Cadmium Immobilization by Secondary Fe Mineral Formation in a pH-Neutral Soil. Environmental Science & Echnology, 2013, 47, 13430-13439.	4.6	114
36	Fate of Cd during Microbial Fe(III) Mineral Reduction by a Novel and Cd-Tolerant <i>Geobacter</i> Species. Environmental Science & Environmental Scienc	4.6	113

#	Article	IF	CITATIONS
37	Influence of Seasonal and Geochemical Changes on the Geomicrobiology of an Iron Carbonate Mineral Water Spring. Applied and Environmental Microbiology, 2012, 78, 7185-7196.	1.4	60
38	Linking environmental processes to the <i>in situ</i> functioning of microorganisms by highâ€resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission Xâ€ray microscopy (STXM). Environmental Microbiology, 2012, 14, 2851-2869.	1.8	81
39	Monitoring Abundance and Expression of " <i>Dehalococcoides</i> ―Species Chloroethene-Reductive Dehalogenases in a Tetrachloroethene-Dechlorinating Flow Column. Applied and Environmental Microbiology, 2008, 74, 5695-5703.	1.4	133