
Michaela Sojkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5979781/publications.pdf Version: 2024-02-01

MICHAELA SOLKOVA

#	Article	IF	CITATIONS
1	Tuning the orientation of few-layer MoS ₂ films using one-zone sulfurization. RSC Advances, 2019, 9, 29645-29651.	1.7	24
2	Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond. Scientific Reports, 2019, 9, 2001.	1.6	19
3	Characterization of epitaxial LSMO thin films with high Curie temperature prepared on different substrates. Vacuum, 2016, 126, 24-28.	1.6	17
4	Influence of GaN/AlGaN/GaN (0001) and Si (100) substrates on structural properties of extremely thin MoS2 films grown by pulsed laser deposition. Applied Surface Science, 2017, 395, 232-236.	3.1	16
5	Polarized Raman Reveals Alignment of Few-Layer MoS ₂ Films. Journal of Physical Chemistry C, 2019, 123, 29468-29475.	1.5	14
6	Layered WS2 thin films prepared by sulfurization of sputtered W films. Applied Surface Science, 2021, 544, 148719.	3.1	14
7	High carrier mobility epitaxially aligned PtSe2 films grown by one-zone selenization. Applied Surface Science, 2021, 538, 147936.	3.1	13
8	Low energy electron beam processing of YBCO thin films. Applied Surface Science, 2017, 395, 42-49.	3.1	11
9	Nanorods and nanocones for advanced sensor applications. Applied Surface Science, 2018, 461, 61-65.	3.1	11
10	Structural and optical properties of WS2 prepared using sulfurization of different thick sputtered tungsten films. Applied Surface Science, 2018, 461, 133-138.	3.1	11
11	Reorientation of π-conjugated molecules on few-layer MoS ₂ films. Physical Chemistry Chemical Physics, 2020, 22, 3097-3104.	1.3	11
12	Structural properties of epitaxial La0.67Sr0.33MnO3 films with increased temperature of metal–insulator transition grown on MgO substrates. Thin Solid Films, 2015, 583, 19-24.	0.8	9
13	Friction control by engineering the crystallographic orientation of the lubricating few-layer MoS2 films. Applied Surface Science, 2021, 540, 148328.	3.1	8
14	Nanoimaging of Orientational Defects in Semiconducting Organic Films. Journal of Physical Chemistry C, 2021, 125, 9229-9235.	1.5	8
15	Orientation of Few-Layer MoS ₂ Films: In-Situ X-ray Scattering Study During Sulfurization. Journal of Physical Chemistry C, 2021, 125, 9461-9468.	1.5	7
16	Preparation and structural properties of YBCO films grown on GaN/c-sapphire hexagonal substrate. Applied Surface Science, 2010, 256, 5618-5622.	3.1	6
17	Uncooled Antenna-Coupled Microbolometer for Detection of Terahertz Radiation. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 462-478.	1.2	6
18	Hg-based cuprate superconducting films patterned into structures for ultrafast photodetectors. Applied Surface Science, 2008, 254, 3638-3642.	3.1	5

MICHAELA SOJKOVA

#	Article	IF	CITATIONS
19	Simultaneous Monitoring of Molecular Thin Film Morphology and Crystal Structure by X-ray Scattering. Crystal Growth and Design, 2020, 20, 5269-5276.	1.4	5
20	Influence of precursor thin-film quality on the structural properties of large-area MoS2 films grown by sulfurization of MoO3 on c-sapphire. Applied Surface Science, 2021, 540, 148240.	3.1	5
21	Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenes. Physical Review Materials, 2021, 5, .	0.9	5
22	MoS2 thin films prepared by sulfurization. , 2017, , .		5
23	Ultrafast Photoresponse Dynamics of Current-Biased Hg-Ba-Ca-Cu-O Superconducting Microbridges. IEEE Transactions on Applied Superconductivity, 2007, 17, 3648-3651.	1.1	4
24	Tl-based patterned superconducting structures: fabrication and study. Superconductor Science and Technology, 2010, 23, 045007.	1.8	4
25	Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials. Applied Surface Science, 2017, 395, 237-240.	3.1	4
26	Highly Crystalline MoS ₂ Thin Films Fabricated by Sulfurization. Physica Status Solidi (B): Basic Research, 2019, 256, 1900342.	0.7	4
27	Growth of PtSe2 few-layer films on NbN superconducting substrate. Applied Physics Letters, 2021, 119, .	1.5	4
28	Optical Characterization of Few-Layer PtSe ₂ Nanosheet Films. ACS Omega, 2021, 6, 35398-35403.	1.6	4
29	Do mercury superconducting films grown by vapour phase or by bulk mass transfer?. Physica C: Superconductivity and Its Applications, 2006, 435, 31-36.	0.6	3
30	Tl-based superconducting films prepared by aerosol spray deposition and thallinated in an open system. Open Physics, 2007, 5, .	0.8	3
31	The influence of the rhenium in the precursor film on the properties of the thin superconducting films based on thallium. Physica C: Superconductivity and Its Applications, 2009, 469, 308-311.	0.6	3
32	Stable fluoride based sputtering target for Tl-based cuprate superconducting thin film fabrication. Vacuum, 2015, 119, 250-255.	1.6	3
33	Substrate influence on low energy electron beam processing of YBa2Cu3O7â~δ thin films. Applied Surface Science, 2021, 535, 147624.	3.1	3
34	Tuning the charge carrier mobility in few-layer PtSe2 films by Se : Pt ratio. RSC Advances, 2021, 11, 27292-27297.	1.7	3
35	Pulsed-THz Characterization of Hg-Based, High-Temperature Superconductors. IEEE Transactions on Applied Superconductivity, 2009, 19, 3614-3617.	1.1	2
36	LSMO Films with Increased Temperature of MI Transition. Acta Physica Polonica A, 2014, 126, 212-213.	0.2	2

Michaela Sojkova

#	Article	IF	CITATIONS
37	Fabrication of hybrid thin film structures from HTS and CMR materials. Journal of Physics: Conference Series, 2016, 700, 012022.	0.3	2
38	Properties of LSMO/YBCO cross-strip type junctions. Journal of Physics: Conference Series, 2018, 992, 012052.	0.3	2
39	Electrical transport effects in YBCO/LSMO bilayer junctions. Physica B: Condensed Matter, 2018, 550, 324-331.	1.3	2
40	Novel highly substituted thiophene-based n-type organic semiconductor: structural study, optical anisotropy and molecular control. CrystEngComm, 2020, 22, 7095-7103.	1.3	2
41	Correlation Between the Crystalline Phase of Molybdenum Oxide and Horizontal Alignment in Thin MoS ₂ Films. Journal of Physical Chemistry C, 2020, 124, 19362-19367.	1.5	2
42	LSMO/YBCO Heterostructures and Investigation of "Negative" Resistance Effect in the Interface. Acta Physica Polonica A, 2017, 131, 842-844.	0.2	2
43	Influence of the reaction conditions on the formation of Tl(Re)-Ba-Ca-Cu-O superconducting thin films by thallination in open system. Open Physics, 2007, 5, .	0.8	1
44	Role of the mercury pressure during reaction synthesis of Hg(Re)-based superconducting films. Open Physics, 2007, 5, .	0.8	1
45	Patterning of Tl-based superconducting films using new etching solution. Applied Surface Science, 2014, 312, 208-211.	3.1	1
46	Texture of YBCO layer grown on GaN/c-sapphire substrates. Applied Surface Science, 2021, 543, 148718.	3.1	1
47	Magnetization, Susceptibility and Critical Currents of (Tl _{2-x} Re _x)Ba ₂ CaCu ₂ O _y Thin Films. Acta Physica Polonica A, 2012, 121, 845-849.	0.2	1
48	Characterization of Epitaxial LSMO Films Grown on STO Substrates. Acta Physica Polonica A, 2017, 131, 848-850.	0.2	1
49	Investigation of a nanostructured GaP/MoS ₂ p-n heterojunction photodiode. AIP Advances, 2022, 12, 065004.	0.6	1
50	Contactless testing of mercury-based thin films. Physica C: Superconductivity and Its Applications, 2006, 435, 41-45.	0.6	0
51	Optical-pump-THz-probe studies of carrier dynamics in Hg-based high-temperature superconducting thin films. , 2007, , .		Ο
52	Optical-Pump-THz-Probe Studies of Carrier Dynamics in Hg-Based High-Temperature Superconducting Thin Films. , 2007, , .		0
53	Investigation of the resistive properties of HTS/manganite bilayers. Journal of Physics: Conference Series, 2016, 700, 012020.	0.3	0
54	Transport properties of YBa2Cu3Ox/La0.67Sr0.33MnO3nanostrips and YBa2Cu3Ox/La0.67Sr0.33MnO3/YBa2Cu3Oxnanojunctions. Journal of Physics: Conference Series, 2016, 700, 012021.	0.3	0

#	Article	IF	CITATIONS
55	Terahertz Probing of Carrier Dynamics in Hg-Based High-Temperature Superconducting Thin Films. , 2007, , .		0