
Ali Shilatifard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5979760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On Healthy Scientific Debates. Science Advances, 2022, 8, eabq1534.	4.7	0
2	lt's a DoG-eat-DoG world—altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production. Molecular Cell, 2022, 82, 1981-1991.	4.5	12
3	A synthetic lethality screen reveals ING5 as a genetic dependency of catalytically dead Set1A/COMPASS in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118385119.	3.3	3
4	The dire need for federal support of molecular research, then and now. Science Advances, 2022, 8, .	4.7	0
5	COMPASS and SWI/SNF complexes in development and disease. Nature Reviews Genetics, 2021, 22, 38-58.	7.7	142
6	Acute perturbation strategies in interrogating RNA polymerase II elongation factor function in gene expression. Genes and Development, 2021, 35, 273-285.	2.7	25
7	Therapeutic targeting of transcriptional elongation in diffuse intrinsic pontine glioma. Neuro-Oncology, 2021, 23, 1348-1359.	0.6	12
8	Decoding the protein composition of whole nucleosomes with Nuc-MS. Nature Methods, 2021, 18, 303-308.	9.0	31
9	Crosstalk between nonclassical monocytes and alveolar macrophages mediates transplant ischemia-reperfusion injury through classical monocyte recruitment. JCI Insight, 2021, 6, .	2.3	34
10	The roles of Polycomb repressive complexes in mammalian development and cancer. Nature Reviews Molecular Cell Biology, 2021, 22, 326-345.	16.1	210
11	Building on a strong foundation. Science Advances, 2021, 7, .	4.7	0
12	Epigenetic targeted therapy of stabilized BAP1 in ASXL1 gain-of-function mutated leukemia. Nature Cancer, 2021, 2, 515-526.	5.7	35
13	Epigenetic Reprogramming of Host and Viral Genes by Human Cytomegalovirus Infection in Kasumi-3 Myeloid Progenitor Cells at Early Times Postinfection. Journal of Virology, 2021, 95, .	1.5	5
14	Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. Science Advances, 2021, 7, .	4.7	36
15	A ChIP-exo screen of 887 Protein Capture Reagents Program transcription factor antibodies in human cells. Genome Research, 2021, 31, 1663-1679.	2.4	9
16	TOP2B Enzymatic Activity on Promoters and Introns Modulates Multiple Oncogenes in Human Gliomas. Clinical Cancer Research, 2021, 27, 5669-5680.	3.2	4
17	Expanding the breadth and depth of <i>Science Advances</i> . Science Advances, 2021, 7, .	4.7	0
18	SPT5 stabilization of promoter-proximal RNA polymerase II. Molecular Cell, 2021, 81, 4413-4424.e5.	4.5	46

#	Article	IF	CITATIONS
19	Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature, 2021, 590, 635-641.	13.7	524
20	Integrator enforces the fidelity of transcriptional termination at protein-coding genes. Science Advances, 2021, 7, eabe3393.	4.7	23
21	Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature, 2021, 599, 485-490.	13.7	126
22	A trivalent nucleosome interaction by PHIP/BRWD2 is disrupted in neurodevelopmental disorders and cancer. Genes and Development, 2021, 35, 1642-1656.	2.7	16
23	UBR7 acts as a histone chaperone for postâ€nucleosomal histone H3. EMBO Journal, 2021, 40, e108307.	3.5	12
24	EPCO-20. PEDIATRIC HIGH-GRADE GLIOMA EXHIBITS DISTINCT 3D GENOME STRUCTURE THAT IMPACTS TRANSCRIPTION REGULATION. Neuro-Oncology, 2021, 23, vi6-vi6.	0.6	0
25	A non-canonical monovalent zinc finger stabilizes the integration of Cfp1 into the H3K4 methyltransferase complex COMPASS. Nucleic Acids Research, 2020, 48, 421-431.	6.5	6
26	DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27365-27373.	3.3	43
27	Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nature Genetics, 2020, 52, 1271-1281.	9.4	209
28	Lung transplantation for patients with severe COVID-19. Science Translational Medicine, 2020, 12, .	5.8	246
29	Effects of H3.3G34V mutation on genomic H3K36 and H3K27 methylation patterns in isogenic pediatric glioma cells. Acta Neuropathologica Communications, 2020, 8, 219.	2.4	14
30	A small UTX stabilization domain of Trr is conserved within mammalian MLL3-4/COMPASS and is sufficient to rescue loss of viability in null animals. Genes and Development, 2020, 34, 1493-1502.	2.7	14
31	The Human Integrator Complex Facilitates Transcriptional Elongation by Endonucleolytic Cleavage of Nascent Transcripts. Cell Reports, 2020, 32, 107917.	2.9	68
32	NCI-CONNECT: Comprehensive Oncology Network Evaluating Rare CNS Tumors—Histone Mutated Midline Glioma Workshop Proceedings*. Neuro-Oncology Advances, 2020, 2, vdaa007.	0.4	4
33	Targeting DNA Methylation Depletes Uterine Leiomyoma Stem Cell–enriched Population by Stimulating Their Differentiation. Endocrinology, 2020, 161, .	1.4	15
34	Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nature Genetics, 2020, 52, 615-625.	9.4	76
35	COVID-19: Rescue by transcriptional inhibition. Science Advances, 2020, 6, .	4.7	3
36	NELF Regulates a Promoter-Proximal Step Distinct from RNA Pol II Pause-Release. Molecular Cell, 2020, 78, 261-274.e5.	4.5	110

#	Article	IF	CITATIONS
37	Coordinated regulation of cellular identity–associated H3K4me3 breadth by the COMPASS family. Science Advances, 2020, 6, eaaz4764.	4.7	37
38	A genetic analysis reveals novel histone residues required for transcriptional reprogramming upon stress. Nucleic Acids Research, 2020, 48, 3455-3475.	6.5	14
39	The role of histone modifications in leukemogenesis. Journal of Biosciences, 2020, 45, 1.	0.5	4
40	Medicine in the time of corona: Fundamental molecular research is "essential― Science Advances, 2020, 6, eabc2800.	4.7	2
41	HGG-26. H3G34V MUTATION AFFECTS GENOMIC H3K36 METHYLATION IN PEDIATRIC GLIOMA. Neuro-Oncology, 2020, 22, iii348-iii348.	0.6	0
42	The role of histone modifications in leukemogenesis. Journal of Biosciences, 2020, 45, .	0.5	0
43	β-Catenin/Tcf7l2–dependent transcriptional regulation of GLUT1 gene expression by Zic family proteins in colon cancer. Science Advances, 2019, 5, eaax0698.	4.7	28
44	CATACOMB: An endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Science Advances, 2019, 5, eaax2887.	4.7	86
45	LEDGF and HDGF2 relieve the nucleosome-induced barrier to transcription in differentiated cells. Science Advances, 2019, 5, eaay3068.	4.7	61
46	Radiosensitization by Histone H3 Demethylase Inhibition in Diffuse Intrinsic Pontine Glioma. Clinical Cancer Research, 2019, 25, 5572-5583.	3.2	52
47	HGG-10. HISTONE H3G34V MUTATION IS SUFFICIENT TO DRIVE DISTINCT GENOMIC H3K36 METHYLATION PATTERNS IN PEDIATRIC GLIOMA. Neuro-Oncology, 2019, 21, ii88-ii89.	0.6	0
48	The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity–independent genomic targeting. Nature Genetics, 2019, 51, 618-626.	9.4	81
49	UTX Mutations in Human Cancer. Cancer Cell, 2019, 35, 168-176.	7.7	113
50	Epigenetic modifications of histones in cancer. Genome Biology, 2019, 20, 245.	3.8	322
51	USP7 Cooperates with NOTCH1 to Drive the Oncogenic Transcriptional Program in T-Cell Leukemia. Clinical Cancer Research, 2019, 25, 222-239.	3.2	66
52	Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1517-1536.	2.5	866
53	Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia. Genes and Development, 2019, 33, 61-74.	2.7	26
54	An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells. Science Advances, 2018, 4, eaap8747.	4.7	55

#	Article	IF	CITATIONS
55	A Carcinogen-induced mouse model recapitulates the molecular alterations of human muscle invasive bladder cancer. Oncogene, 2018, 37, 1911-1925.	2.6	102
56	DIPG-63. RADIATION DNA DAMAGE REPAIR INHIBITION BY GSK-J4 INDUCED CHROMATIN COMPACTION IN DIPG. Neuro-Oncology, 2018, 20, i61-i62.	0.6	0
57	PDTM-42. TARGETED INHIBITION OF BET BROMODOMAIN AND JMJD3 PROTEINS FOR THE TREATMENT OF DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2018, 20, vi212-vi213.	0.6	0
58	TET2 coactivates gene expression through demethylation of enhancers. Science Advances, 2018, 4, eaau6986.	4.7	86
59	A CHAF1B-Dependent Molecular Switch in Hematopoiesis and Leukemia Pathogenesis. Cancer Cell, 2018, 34, 707-723.e7.	7.7	68
60	Genetic and Epigenetic Deregulation of Enhancers in Cancer. , 2018, , .		0
61	DDIS-13. UNDERSTANDING GLIOBLASTOMA SUSCEPTIBILITY TO TOP2-TARGETING DRUGS FOR PERSONALIZED THERAPY. Neuro-Oncology, 2018, 20, vi71-vi72.	0.6	0
62	Structural Analysis of the Ash2L/Dpy-30 Complex Reveals a Heterogeneity in H3K4 Methylation. Structure, 2018, 26, 1594-1603.e4.	1.6	26
63	Corepressor SMRT is required to maintain Hox transcriptional memory during somitogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10381-10386.	3.3	10
64	Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nature Communications, 2018, 9, 4406.	5.8	40
65	Targeting Processive Transcription Elongation via SEC Disruption for MYC-Induced Cancer Therapy. Cell, 2018, 175, 766-779.e17.	13.5	86
66	Promoter bivalency favors an open chromatin architecture in embryonic stem cells. Nature Genetics, 2018, 50, 1452-1462.	9.4	113
67	Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis. Science Translational Medicine, 2018, 10, .	5.8	55
68	Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy. Nature Medicine, 2018, 24, 758-769.	15.2	125
69	MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Molecular Cell, 2018, 70, 825-841.e6.	4.5	123
70	Impactful science as the guiding principle. Science Advances, 2018, 4, eaau1696.	4.7	0
71	Born to run: control of transcription elongation by RNA polymerase II. Nature Reviews Molecular Cell Biology, 2018, 19, 464-478.	16.1	304
72	Enhancer Logic and Mechanics in Development and Disease. Trends in Cell Biology, 2018, 28, 608-630.	3.6	146

#	Article	IF	CITATIONS
73	Structure and Conformational Dynamics of a COMPASS Histone H3K4 Methyltransferase Complex. Cell, 2018, 174, 1117-1126.e12.	13.5	84
74	Epigenetic ConFUSION: SS18-SSX Fusion Rewires BAF Complex to Activate Bivalent Genes in Synovial Sarcoma. Cancer Cell, 2018, 33, 951-953.	7.7	2
75	Detection of histone H3 K27M mutation and post-translational modifications in pediatric diffuse midline glioma via tissue immunohistochemistry informs diagnosis and clinical outcomes. Oncotarget, 2018, 9, 37112-37124.	0.8	44
76	Not All H3K4 Methylations Are Created Equal: Mll2/COMPASS Dependency in Primordial Germ Cell Specification. Molecular Cell, 2017, 65, 460-475.e6.	4.5	81
77	Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nature Medicine, 2017, 23, 493-500.	15.2	332
78	Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive Myc-Driven Group 3 Medulloblastoma. Cell Reports, 2017, 18, 2907-2917.	2.9	61
79	Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathologica Communications, 2017, 5, 28.	2.4	127
80	SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression. Genes and Development, 2017, 31, 787-801.	2.7	48
81	Precancer Atlas to Drive Precision Prevention Trials. Cancer Research, 2017, 77, 1510-1541.	0.4	116
82	Multiple Roles for the MLL/COMPASS Family in the Epigenetic Regulation of Gene Expression and in Cancer. Annual Review of Cancer Biology, 2017, 1, 425-446.	2.3	36
83	Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia. Cell, 2017, 168, 59-72.e13.	13.5	99
84	A cryptic Tudor domain links BRWD2/PHIP to COMPASS-mediated histone H3K4 methylation. Genes and Development, 2017, 31, 2003-2014.	2.7	54
85	Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nature Genetics, 2017, 49, 1647-1653.	9.4	168
86	Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation. Genes and Development, 2017, 31, 1732-1737.	2.7	68
87	PAF1 regulation of promoter-proximal pause release via enhancer activation. Science, 2017, 357, 1294-1298.	6.0	95
88	Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. Journal of Experimental Medicine, 2017, 214, 2387-2404.	4.2	755
89	Human TFIIH Kinase CDK7 Regulates Transcription-Associated Chromatin Modifications. Cell Reports, 2017, 20, 1173-1186.	2.9	123
90	A cytoplasmic COMPASS is necessary for cell survival and triple-negative breast cancer pathogenesis by regulating metabolism. Genes and Development, 2017, 31, 2056-2066.	2.7	55

#	Article	IF	CITATIONS
91	PDTM-28. TARGETED INHIBITION OF EZH2 AND BET BROMODOMAIN PROTEINS FOR THE TREATMENT OF DIFFUSE INTRINSIC PONTINE GLIOMAS. Neuro-Oncology, 2017, 19, vi196-vi196.	0.6	2
92	Editorial overview: Cancer genomics: Darwin meets Waddington: the interplay between cancer genomes and epigenomes. Current Opinion in Genetics and Development, 2016, 36, iv-vi.	1.5	1
93	Epigenetics of hematopoiesis and hematological malignancies. Genes and Development, 2016, 30, 2021-2041.	2.7	125
94	MLL3/MLL4/COMPASS Family on Epigenetic Regulation of Enhancer Function and Cancer. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026427.	2.9	122
95	An Evolutionary Conserved Epigenetic Mark of Polycomb Response Elements Implemented by Trx/MLL/COMPASS. Molecular Cell, 2016, 63, 318-328.	4.5	60
96	Epigenetic balance of gene expression by Polycomb and COMPASS families. Science, 2016, 352, aad9780.	6.0	407
97	Regulation of the imprinted <i>Dlk1-Dio3</i> locus by allele-specific enhancer activity. Genes and Development, 2016, 30, 92-101.	2.7	55
98	Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements. PLoS Genetics, 2016, 12, e1006331.	1.5	27
99	Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. ELife, 2016, 5, .	2.8	107
100	Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis. Molecular Cell, 2015, 60, 435-445.	4.5	102
101	Stably paused genes revealed through inhibition of transcription initiation by the TFIIH inhibitor triptolide. Genes and Development, 2015, 29, 39-47.	2.7	109
102	Characterization of Human Cyclin-Dependent Kinase 12 (CDK12) and CDK13 Complexes in C-Terminal Domain Phosphorylation, Gene Transcription, and RNA Processing. Molecular and Cellular Biology, 2015, 35, 928-938.	1.1	153
103	Zic2 Is an Enhancer-Binding Factor Required for Embryonic Stem Cell Specification. Molecular Cell, 2015, 57, 685-694.	4.5	92
104	Chromatin signatures of cancer. Genes and Development, 2015, 29, 238-249.	2.7	171
105	A phosphorylation switch on RbBP5 regulates histone H3 Lys4 methylation. Genes and Development, 2015, 29, 123-128.	2.7	42
106	PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell, 2015, 162, 1003-1015.	13.5	196
107	Analysis of dynamic changes in retinoid-induced transcription and epigenetic profiles of murine <i>Hox</i> clusters in ES cells. Genome Research, 2015, 25, 1229-1243.	2.4	64
108	The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nature Medicine, 2015, 21, 1199-1208.	15.2	359

#	Article	IF	CITATIONS
109	Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature, 2015, 525, 206-211.	13.7	386
110	Molecular Basis for DPY-30 Association to COMPASS-like and NURF Complexes. Structure, 2014, 22, 1821-1830.	1.6	40
111	Enhancer Malfunction in Cancer. Molecular Cell, 2014, 53, 859-866.	4.5	156
112	Enhancer biology and enhanceropathies. Nature Structural and Molecular Biology, 2014, 21, 210-219.	3.6	259
113	A Role for H3K4 Monomethylation in Gene Repression and Partitioning of Chromatin Readers. Molecular Cell, 2014, 53, 979-992.	4.5	191
114	Context dependency of Set1/COMPASS-mediated histone H3 Lys4 trimethylation. Genes and Development, 2014, 28, 115-120.	2.7	46
115	Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science, 2014, 345, 1065-1070.	6.0	163
116	Inhibit Globally, Act Locally: CDK7 Inhibitors in Cancer Therapy. Cancer Cell, 2014, 26, 158-159.	7.7	29
117	Integrator Regulates Transcriptional Initiation and Pause Release following Activation. Molecular Cell, 2014, 56, 128-139.	4.5	147
118	Regulation of MYC Expression and Differential JQ1 Sensitivity in Cancer Cells. PLoS ONE, 2014, 9, e87003.	1.1	51
119	The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nature Structural and Molecular Biology, 2013, 20, 1093-1097.	3.6	165
120	The Little Elongation Complex Functions at Initiation and Elongation Phases of snRNA Gene Transcription. Molecular Cell, 2013, 51, 493-505.	4.5	54
121	The MLL3/MLL4 Branches of the COMPASS Family Function as Major Histone H3K4 Monomethylases at Enhancers. Molecular and Cellular Biology, 2013, 33, 4745-4754.	1.1	329
122	SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends in Biochemical Sciences, 2013, 38, 621-639.	3.7	244
123	The RNA Pol II Elongation Factor Ell3 Marks Enhancers in ES Cells and Primes Future Gene Activation. Cell, 2013, 152, 144-156.	13.5	83
124	Drosophila SETs Its Sights on Cancer: Trr/MLL3/4 COMPASS-Like Complexes in Development and Disease. Molecular and Cellular Biology, 2013, 33, 1698-1701.	1.1	20
125	Transcriptional elongation checkpoint control in development and disease. Genes and Development, 2013, 27, 1079-1088.	2.7	63
126	(Poly)Combing the Pediatric Cancer Genome for Answers. Science, 2013, 340, 823-824.	6.0	11

#	Article	IF	CITATIONS
127	Polycomb Repressive Complex 2-Dependent and -Independent Functions of Jarid2 in Transcriptional Regulation in <i>Drosophila</i> . Molecular and Cellular Biology, 2012, 32, 1683-1693.	1.1	66
128	The Super Elongation Complex Family of RNA Polymerase II Elongation Factors: Gene Target Specificity and Transcriptional Output. Molecular and Cellular Biology, 2012, 32, 2608-2617.	1.1	150
129	Enhancer-associated H3K4 monomethylation by Trithorax-related, the <i>Drosophila</i> homolog of mammalian Mll3/Mll4. Genes and Development, 2012, 26, 2604-2620.	2.7	327
130	Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes and Development, 2012, 26, 914-919.	2.7	64
131	SnapShot: Histone Lysine Methylase Complexes. Cell, 2012, 149, 498-498.e1.	13.5	38
132	The super elongation complex (SEC) family in transcriptional control. Nature Reviews Molecular Cell Biology, 2012, 13, 543-547.	16.1	303
133	The COMPASS Family of Histone H3K4 Methylases: Mechanisms of Regulation in Development and Disease Pathogenesis. Annual Review of Biochemistry, 2012, 81, 65-95.	5.0	896
134	Human Mediator Subunit MED26 Functions as a Docking Site for Transcription Elongation Factors. Cell, 2011, 146, 92-104.	13.5	293
135	The Little Elongation Complex Regulates Small Nuclear RNA Transcription. Molecular Cell, 2011, 44, 954-965.	4.5	75
136	Histone modification: cause or cog?. Trends in Genetics, 2011, 27, 389-396.	2.9	415
137	The COMPASS Family of H3K4 Methylases in Drosophila. Molecular and Cellular Biology, 2011, 31, 4310-4318.	1.1	195
138	Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes and Development, 2011, 25, 1486-1498.	2.7	161
139	The super elongation complex (SEC) and MLL in development and disease. Genes and Development, 2011, 25, 661-672.	2.7	289
140	Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20526-20531.	3.3	120
141	Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nature Reviews Cancer, 2010, 10, 721-728.	12.8	151
142	The H3K27me3 Demethylase dUTX Is a Suppressor of Notch- and Rb-Dependent Tumors in <i>Drosophila</i> . Molecular and Cellular Biology, 2010, 30, 2485-2497.	1.1	106
143	Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes and Development, 2010, 24, 574-589.	2.7	272
144	AFF4, a Component of the ELL/P-TEFb Elongation Complex and a Shared Subunit of MLL Chimeras, Can Link Transcription Elongation to Leukemia. Molecular Cell, 2010, 37, 429-437.	4.5	504

#	Article	IF	CITATIONS
145	The Language of Histone Crosstalk. Cell, 2010, 142, 682-685.	13.5	505
146	Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Developmental Biology, 2010, 339, 240-249.	0.9	290
147	Lessons learned from yeast about human leukemia. FASEB Journal, 2010, 24, 78.2.	0.2	Ο
148	Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1. Journal of Cell Biology, 2009, 186, 371-377.	2.3	118
149	Regulation of H3K4 Trimethylation via Cps40 (Spp1) of COMPASS Is Monoubiquitination Independent: Implication for a Phe/Tyr Switch by the Catalytic Domain of Set1. Molecular and Cellular Biology, 2009, 29, 3478-3486.	1.1	54
150	Global Analysis of H3K4 Methylation Defines MLL Family Member Targets and Points to a Role for MLL1-Mediated H3K4 Methylation in the Regulation of Transcriptional Initiation by RNA Polymerase II. Molecular and Cellular Biology, 2009, 29, 6074-6085.	1.1	308
151	An operational definition of epigenetics: Figure 1 Genes and Development, 2009, 23, 781-783.	2.7	1,457
152	RAD6-Mediated Transcription-Coupled H2B Ubiquitylation Directly Stimulates H3K4 Methylation in Human Cells. Cell, 2009, 137, 459-471.	13.5	453
153	A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nature Structural and Molecular Biology, 2008, 15, 881-888.	3.6	172
154	Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Current Opinion in Cell Biology, 2008, 20, 341-348.	2.6	418
155	Molecular Regulation of H3K4 Trimethylation by Wdr82, a Component of Human Set1/COMPASS. Molecular and Cellular Biology, 2008, 28, 7337-7344.	1.1	281
156	<i>Drosophila</i> UTX Is a Histone H3 Lys27 Demethylase That Colocalizes with the Elongating Form of RNA Polymerase II. Molecular and Cellular Biology, 2008, 28, 1041-1046.	1.1	120
157	Ctk Complex-Mediated Regulation of Histone Methylation by COMPASS. Molecular and Cellular Biology, 2007, 27, 709-720.	1.1	59
158	Histone Crosstalk between H2B Monoubiquitination and H3 Methylation Mediated by COMPASS. Cell, 2007, 131, 1084-1096.	13.5	373
159	The trithorax-group gene in Drosophila little imaginal discs encodes a trimethylated histone H3 Lys4 demethylase. Nature Structural and Molecular Biology, 2007, 14, 344-346.	3.6	104
160	Chromatin Modifications by Methylation and Ubiquitination: Implications in the Regulation of Gene Expression. Annual Review of Biochemistry, 2006, 75, 243-269.	5.0	1,002
161	Histone H2B Monoubiquitination Functions Cooperatively with FACT to Regulate Elongation by RNA Polymerase II. Cell, 2006, 125, 703-717.	13.5	636
162	Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nature Structural and Molecular Biology, 2006, 13, 852-854.	3.6	288

#	Article	IF	CITATIONS
163	Bur1/Bur2 and the Ctk Complex in Yeast: The Split Personality of Mammalian P-TEFb. Cell Cycle, 2006, 5, 1066-1068.	1.3	62
164	Molecular Regulation of Histone H3 Trimethylation by COMPASS and the Regulation of Gene Expression. Molecular Cell, 2005, 19, 849-856.	4.5	263
165	Integrator, a Multiprotein Mediator of Small Nuclear RNA Processing, Associates with the C-Terminal Repeat of RNA Polymerase II. Cell, 2005, 123, 265-276.	13.5	420
166	The RNA Polymerase II Elongation Complex. Annual Review of Biochemistry, 2003, 72, 693-715.	5.0	212
167	Bre1, an E3 Ubiquitin Ligase Required for Recruitment and Substrate Selection of Rad6 at a Promoter. Molecular Cell, 2003, 11, 267-274.	4.5	489
168	The Paf1 Complex Is Required for Histone H3 Methylation by COMPASS and Dot1p: Linking Transcriptional Elongation to Histone Methylation. Molecular Cell, 2003, 11, 721-729.	4.5	642
169	Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II. Molecular and Cellular Biology, 2003, 23, 4207-4218.	1.1	600
170	The Paf1 Complex Is Essential for Histone Monoubiquitination by the Rad6-Bre1 Complex, Which Signals for Histone Methylation by COMPASS and Dot1p. Journal of Biological Chemistry, 2003, 278, 34739-34742.	1.6	340
171	Transcriptional Elongation by RNA Polymerase II and Histone Methylation. Journal of Biological Chemistry, 2003, 278, 26303-26306.	1.6	152
172	COMPASS, a Histone H3 (Lysine 4) Methyltransferase Required for Telomeric Silencing of Gene Expression. Journal of Biological Chemistry, 2002, 277, 10753-10755.	1.6	365
173	RNA Polymerase II Elongation Factors of Saccharomyces cerevisiae : a Targeted Proteomics Approach. Molecular and Cellular Biology, 2002, 22, 6979-6992.	1.1	462
174	Identification, Cloning, Expression, and Biochemical Characterization of the Testis-specific RNA Polymerase II Elongation Factor ELL3. Journal of Biological Chemistry, 2000, 275, 32052-32056.	1.6	66
175	Structure and Function of RNA Polymerase II Elongation Factor ELL. Journal of Biological Chemistry, 1997, 272, 22355-22363.	1.6	71