Won Cheol Yim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5979168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.	21.4	472
2	A roadmap for research on crassulacean acid metabolism (<scp>CAM</scp>) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist, 2015, 207, 491-504.	7.3	211
3	The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 2017, 8, 1899.	12.8	159
4	Disentangling Sources of Gene Tree Discordance in Phylogenomic Data Sets: Testing Ancient Hybridizations in Amaranthaceae s.l. Systematic Biology, 2021, 70, 219-235.	5.6	112
5	Draft Nuclear Genome Sequence of the Halophilic and Beta-Carotene-Accumulating Green Alga <i>Dunaliella salina</i> Strain CCAP19/18. Genome Announcements, 2017, 5, .	0.8	83
6	Temporal and spatial transcriptomic and micro <scp>RNA</scp> dynamics of <scp>CAM</scp> photosynthesis in pineapple. Plant Journal, 2017, 92, 19-30.	5.7	78
7	A gene family encoding RING finger proteins in rice: their expansion, expression diversity, and co-expressed genes. Plant Molecular Biology, 2010, 72, 369-380.	3.9	70
8	Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics. BMC Plant Biology, 2017, 17, 67.	3.6	61
9	The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 2019, 51, 1549-1558.	21.4	60
10	PLANEX: the plant co-expression database. BMC Plant Biology, 2013, 13, 83.	3.6	52
11	Evolution of <scp>l</scp> â€ <scp>DOPA</scp> 4,5â€dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales. New Phytologist, 2020, 227, 914-929.	7.3	48
12	Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings. Frontiers in Plant Science, 2016, 7, 1143.	3.6	47
13	Laying the Foundation for Crassulacean Acid Metabolism (CAM) Biodesign: Expression of the C4 Metabolism Cycle Genes of CAM in Arabidopsis. Frontiers in Plant Science, 2019, 10, 101.	3.6	45
14	Expression diversity and evolutionary dynamics of rice duplicate genes. Molecular Genetics and Genomics, 2009, 281, 483-493.	2.1	40
15	A <i>Vitis vinifera</i> basic helix–loop–helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield. Plant Biotechnology Journal, 2018, 16, 1595-1615.	8.3	39
16	Plant tissue succulence engineering improves waterâ€use efficiency, waterâ€deficit stress attenuation and salinity tolerance in Arabidopsis. Plant Journal, 2020, 103, 1049-1072.	5.7	36
17	Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis, by embryo injection and ReMOT Control. IScience, 2022, 25, 103781.	4.1	35
18	Crassulacean Acid Metabolism Abiotic Stress-Responsive Transcription Factors: a Potential Genetic Engineering Approach for Improving Crop Tolerance to Abiotic Stress. Frontiers in Plant Science, 2019, 10, 129.	3.6	28

WON CHEOL YIM

#	Article	IF	CITATIONS
19	Identification of Genes Encoding Enzymes Catalyzing the Early Steps of Carrot Polyacetylene Biosynthesis. Plant Physiology, 2018, 178, 1507-1521.	4.8	26
20	Evolution of non-specific lipid transfer protein (nsLTP) genes in the Poaceae family: their duplication and diversity. Molecular Genetics and Genomics, 2008, 279, 481-497.	2.1	24
21	Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity. Plant Journal, 2021, 107, 77-99.	5.7	21
22	Expressional diversity of wheat nsLTP genes: evidence of subfunctionalization via cis-regulatory divergence. Genetica, 2010, 138, 843-852.	1.1	18
23	Genomic adaptations of the green alga Dunaliella salina to life under high salinity. Algal Research, 2020, 50, 101990.	4.6	18
24	Divergence of genes encoding non-specific lipid transfer proteins in the poaceae family. Molecules and Cells, 2007, 24, 215-23.	2.6	18
25	Biosystems Design to Accelerate C ₃ -to-CAM Progression. Biodesign Research, 2020, 2020, .	1.9	16
26	Cross experimental analysis of microarray gene expression data from volatile organic compounds treated targets. Molecular and Cellular Toxicology, 2011, 7, 233-241.	1.7	11
27	Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments. PeerJ, 2017, 5, e3486.	2.0	10
28	Structural diversity, biosynthesis, and function of plant falcarin-type polyacetylenic lipids. Journal of Experimental Botany, 2022, 73, 2889-2904.	4.8	10
29	Identification of novel 17-estradiol (E2) target genes using cross-experiment gene expression datasets. Toxicology and Environmental Health Sciences, 2010, 2, 25-38.	2.1	9
30	Cross-experimental analysis of microarray gene expression datasets for in silico risk assessment of TiO2 nano-particles. Molecular and Cellular Toxicology, 2012, 8, 229-239.	1.7	8
31	An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria. Journal of Experimental Botany, 2017, 68, 4635-4649.	4.8	7
32	Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in Mesembryanthemum crystallinum. International Journal of Molecular Sciences, 2021, 22, 5020.	4.1	5
33	Mitochondrial haplotypes are not associated with mice selectively bred for high voluntary wheel running. Mitochondrion, 2019, 46, 134-139.	3.4	4
34	Characterization of a microbial consortium with potential for biological degradation of cactus pear biomass for biofuel production. Heliyon, 2021, 7, e07854.	3.2	4
35	Relationship of Transformation Efficiency and Metabolites Induced in Korean Soybean Cotyledons Treated with Sonication. Hang'uk Jakmul Hakhoe Chi, 2013, 58, 119-127.	0.2	4
36	Transcriptional network analysis of the tryptophan-accumulating rice mutant during grain filling. Molecular Genetics and Genomics, 2012, 287, 699-709.	2.1	1

#	Article	IF	CITATIONS
37	Characterization of Expressed Genes Under Ozone Stress in Soybean. Plant Breeding and Biotechnology, 2013, 1, 270-276.	0.9	1
38	Sexual Recombination and Selection During Domestication of Clonally Propagated Pineapple. SSRN Electronic Journal, 0, , .	0.4	1
39	Distribution of Genetic Variants in Korean Soybeans. Hang'uk Jakmul Hakhoe Chi, 2015, 60, 224-230.	0.2	Ο