Shun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5978731/publications.pdf

Version: 2024-02-01

260 papers 5,621 citations

147801 31 h-index 61 g-index

266 all docs

 $\begin{array}{c} 266 \\ \\ \text{docs citations} \end{array}$

266 times ranked 3426 citing authors

#	Article	IF	CITATIONS
1	Development of an indirect ELISA method based on the VP4 protein for detection antibody against duck hepatitis A virus type 1. Journal of Virological Methods, 2022, 300, 114393.	2.1	1
2	Decreased virulence of duck Tembusu virus harboring a mutant NS2A with impaired interaction with STING and IFN \hat{I}^2 induction. Veterinary Microbiology, 2022, 265, 109312.	1.9	0
3	The lysine at position 151 of the duck hepatitis A virus 1 2C protein is critical for its NTPase activities. Veterinary Microbiology, 2022, 264, 109300.	1.9	3
4	Immunogenicity and protection of a Pasteurella multocida strain with a truncated lipopolysaccharide outer core in ducks. Veterinary Research, 2022, 53, 17.	3.0	5
5	Duck plague virus UL41 protein inhibits RIG-I/MDA5-mediated duck IFN-β production via mRNA degradation activity. Veterinary Research, 2022, 53, 22.	3.0	2
6	The protein encoded by the duck plague virus UL14 gene regulates virion morphogenesis and affects viral replication. Poultry Science, 2022, 101, 101863.	3.4	0
7	The G92 NS2B mutant of Tembusu virus is involved in severe defects in progeny virus assembly. Veterinary Microbiology, 2022, 267, 109396.	1.9	O
8	Evaluation of the Safety and Immunogenicity of Duck-Plague Virus gE Mutants. Frontiers in Immunology, 2022, 13, 882796.	4.8	6
9	Assembly-defective Tembusu virus ectopically expressing capsid protein is an approach for live-attenuated flavivirus vaccine development. Npj Vaccines, 2022, 7, 51.	6.0	1
10	Role of the homologous MTase-RdRp interface of flavivirus intramolecular NS5 on duck tembusu virus. Veterinary Microbiology, 2022, 269, 109433.	1.9	2
11	RNA-Seq analysis of duck embryo fibroblast cells gene expression during duck Tembusu virus infection. Veterinary Research, 2022, 53, 34.	3.0	2
12	Features and Functions of the Conserved Herpesvirus Tegument Protein UL 11 and Its Binding Partners. Frontiers in Microbiology, 2022, 13 , .	3.5	1
13	The autophagyâ€related degradation of MDA5 by Tembusu virus nonstructural 2B disrupts IFNβ production. FASEB Journal, 2022, 36, .	0.5	1
14	The substitution at residue 218 of the NS5 protein methyltransferase domain of Tembusu virus impairs viral replication and translation and may triggers RIG-I-like receptor signaling. Poultry Science, 2022, 101, 102017.	3.4	2
15	Duck Tembusu virus infection induces mitochondrial-mediated and death receptor-mediated apoptosis in duck embryo fibroblasts. Veterinary Research, 2022, 53, .	3.0	2
16	A proposed disease classification system for duck viral hepatitis. Poultry Science, 2022, , 102042.	3.4	0
17	Two nuclear localization signals regulate intracellular localization of the duck enteritis virus UL13 protein. Poultry Science, 2021, 100, 26-38.	3.4	2
18	Immunogenicity and protection efficacy of a Salmonella enterica serovar Typhimurium fnr, arcA and fliC mutant. Vaccine, 2021, 39, 588-595.	3.8	10

#	Article	IF	CITATIONS
19	The Roles of Envelope Glycoprotein M in the Life Cycle of Some Alphaherpesviruses. Frontiers in Microbiology, 2021, 12, 631523.	3.5	2
20	Natural Transformation of Riemerella columbina and Its Determinants. Frontiers in Microbiology, 2021, 12, 634895.	3.5	4
21	Functional characterization of Fur in iron metabolism, oxidative stress resistance and virulence of Riemerella anatipestifer. Veterinary Research, 2021, 52, 48.	3.0	11
22	The lipopolysaccharide outer core transferase genes pcgD and hptE contribute differently to the virulence of Pasteurella multocida in ducks. Veterinary Research, 2021, 52, 37.	3.0	6
23	The role of SOCS proteins in the development of virus- induced hepatocellular carcinoma. Virology Journal, 2021, 18, 74.	3.4	8
24	Duck Hepatitis A Virus Type 1 Induces eIF2α Phosphorylation-Dependent Cellular Translation Shutoff via PERK/GCN2. Frontiers in Microbiology, 2021, 12, 624540.	3.5	5
25	DPV UL41 gene encoding protein induces host shutoff activity and affects viral replication. Veterinary Microbiology, 2021, 255, 108979.	1.9	8
26	Amelioration of Beta Interferon Inhibition by NS4B Contributes to Attenuating Tembusu Virus Virulence in Ducks. Frontiers in Immunology, 2021, 12, 671471.	4.8	5
27	Tracing genetic signatures of batâ€toâ€human coronaviruses and early transmission of North American SARSâ€CoVâ€2. Transboundary and Emerging Diseases, 2021, , .	3.0	3
28	SC75741 antagonizes vesicular stomatitis virus, duck Tembusu virus, and duck plague virus infection in duck cells through promoting innate immune responses. Poultry Science, 2021, 100, 101085.	3.4	5
29	Molecular cloning of duck CD40 and its immune function research. Poultry Science, 2021, 100, 101100.	3.4	0
30	The intracellular domain of duck plague virus glycoprotein E affects UL11 protein incorporation into viral particles. Veterinary Microbiology, 2021, 257, 109078.	1.9	10
31	Substitutions at Loop Regions of TMUV E Protein Domain III Differentially Impair Viral Entry and Assembly. Frontiers in Microbiology, 2021, 12, 688172.	3.5	1
32	Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Frontiers in Microbiology, 2021, 12, 668461.	3.5	6
33	The key amino acids of E protein involved in early flavivirus infection: viral entry. Virology Journal, 2021, 18, 136.	3.4	26
34	An Exposed Outer Membrane Hemin-Binding Protein Facilitates Hemin Transport by a TonB-Dependent Receptor in Riemerella anatipestifer. Applied and Environmental Microbiology, 2021, 87, e0036721.	3.1	9
35	Effect of Nutritional Determinants and TonB on the Natural Transformation of Riemerella anatipestifer. Frontiers in Microbiology, 2021, 12, 644868.	3.5	4
36	Emergence of a novel pegivirus species in southwest China showing a high rate of coinfection with parvovirus and circovirus in geese. Poultry Science, 2021, 100, 101251.	3.4	5

#	Article	IF	CITATIONS
37	Replication/Assembly Defective Avian Flavivirus With Internal Deletions in the Capsid Can Be Used as an Approach for Living Attenuated Vaccine. Frontiers in Immunology, 2021, 12, 694959.	4.8	4
38	Distribution and association of antimicrobial resistance and virulence traits in Escherichia coli isolates from healthy waterfowls in Hainan, China. Ecotoxicology and Environmental Safety, 2021, 220, 112317.	6.0	21
39	Identification of the Natural Transformation Genes in Riemerella anatipestifer by Random Transposon Mutagenesis. Frontiers in Microbiology, 2021, 12, 712198.	3.5	3
40	Putative Riemerella anatipestifer Outer Membrane Protein H Affects Virulence. Frontiers in Microbiology, 2021, 12, 708225.	3 . 5	7
41	Construction of an Infectious Clone for Mosquito-Derived Tembusu Virus Prototypical Strain. Virologica Sinica, 2021, 36, 1678-1681.	3.0	3
42	N130, N175 and N207 are N-linked glycosylation sites of duck Tembusu virus NS1 that are important for viral multiplication, viremia and virulence in ducklings. Veterinary Microbiology, 2021, 261, 109215.	1.9	8
43	High incidence of multi-drug resistance and heterogeneity of mobile genetic elements in Escherichia coli isolates from diseased ducks in Sichuan province of China. Ecotoxicology and Environmental Safety, 2021, 222, 112475.	6.0	9
44	Nuclear localization of duck Tembusu virus NS5 protein attenuates viral replication in vitro and NS5-NS2B3 interaction. Veterinary Microbiology, 2021, 262, 109239.	1.9	4
45	Motif C in nonstructural protein 5 of duck Tembusu virus is essential for viral proliferation. Veterinary Microbiology, 2021, 262, 109224.	1.9	0
46	The activation and limitation of the bacterial natural transformation system: The function in genome evolution and stability. Microbiological Research, 2021, 252, 126856.	5. 3	8
47	Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Science of the Total Environment, 2021, 799, 149280.	8.0	32
48	Duck hepatitis A virus 1 has lymphoid tissue tropism altering the organic immune responses of mature ducks. Transboundary and Emerging Diseases, 2021, 68, 3588-3600.	3.0	2
49	Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH-1 and CH-2. Scientific Reports, 2021, 11, 616.	3. 3	3
50	Methyltransferase-Deficient Avian Flaviviruses Are Attenuated Due to Suppression of Viral RNA Translation and Induction of a Higher Innate Immunity. Frontiers in Immunology, 2021, 12, 751688.	4.8	3
51	DHAV-1 Blocks the Signaling Pathway Upstream of Type I Interferon by Inhibiting the Interferon Regulatory Factor 7 Protein. Frontiers in Microbiology, 2021, 12, 700434.	3.5	6
52	The LORF5 Gene Is Non-essential for Replication but Important for Duck Plague Virus Cell-to-Cell Spread Efficiently in Host Cells. Frontiers in Microbiology, 2021, 12, 744408.	3 . 5	4
53	ICP22/IE63 Mediated Transcriptional Regulation and Immune Evasion: Two Important Survival Strategies for Alphaherpesviruses. Frontiers in Immunology, 2021, 12, 743466.	4.8	2
54	UL11 Protein Is a Key Participant of the Duck Plague Virus in Its Life Cycle. Frontiers in Microbiology, 2021, 12, 792361.	3 . 5	5

#	Article	IF	CITATIONS
55	Duck Plague Virus pUL48 Protein Activates the Immediate-Early Gene to Initiate the Transcription of the Virus Gene. Frontiers in Microbiology, 2021, 12, 795730.	3.5	2
56	Emergence of a multidrug-resistant hypervirulent Pasteurella multocida ST342 strain with a floR-carrying plasmid. Journal of Global Antimicrobial Resistance, 2020, 20, 348-350.	2.2	12
57	Pan-genome analysis of Riemerella anatipestifer reveals its genomic diversity and acquired antibiotic resistance associated with genomic islands. Functional and Integrative Genomics, 2020, 20, 307-320.	3 . 5	8
58	Duck enteritis virus UL21 is a late gene encoding a protein that interacts with pUL16. BMC Veterinary Research, 2020, 16, 8.	1.9	8
59	Development of a simple and rapid immunochromatographic strip test for detecting duck plague virus antibodies based on gl protein. Journal of Virological Methods, 2020, 277, 113803.	2.1	4
60	Comparison of immunohistochemistry and Ziehlâ€Neelsen staining for detecting the distribution of <i>Mycobacterium avium</i> subsp <i>avium</i> in naturally infected domestic Pekin ducks (<i>Anas) Tj ETQq</i>	0 0 0.6 gBT	/Oværlock 10
61	The role of capsid in the flaviviral life cycle and perspectives for vaccine development. Vaccine, 2020, 38, 6872-6881.	3.8	7
62	SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Frontiers in Immunology, 2020, 11, 558341.	4.8	41
63	Duck enteritis virus pUL47, as a late structural protein localized in the nucleus, mainly depends on residues 40 to 50 and 768 to 777 and inhibits IFN- \hat{l}^2 signalling by interacting with STAT1. Veterinary Research, 2020, 51, 135.	3.0	8
64	The First Nonmammalian Pegivirus Demonstrates Efficient In Vitro Replication and High Lymphotropism. Journal of Virology, 2020, 94, .	3.4	9
65	The functional identification of Dps in oxidative stress resistance and virulence of Riemerella anatipestifer CH-1 using a new unmarked gene deletion strategy. Veterinary Microbiology, 2020, 247, 108730.	1.9	14
66	Determinants of duck Tembusu virus NS2A/2B polyprotein procession attenuated viral replication and proliferation in vitro. Scientific Reports, 2020, 10, 12423.	3.3	0
67	The role of host elF2α in viral infection. Virology Journal, 2020, 17, 112.	3.4	60
68	Enterovirus Replication Organelles and Inhibitors of Their Formation. Frontiers in Microbiology, 2020, 11, 1817.	3 . 5	21
69	Structures and Functions of the $3\hat{a}\in^2$ Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Frontiers in Cellular and Infection Microbiology, 2020, 10, 453.	3.9	23
70	Alphaherpesvirus Major Tegument Protein VP22: Its Precise Function in the Viral Life Cycle. Frontiers in Microbiology, 2020, 11, 1908.	3 . 5	13
71	The Role of VP16 in the Life Cycle of Alphaherpesviruses. Frontiers in Microbiology, 2020, 11, 1910.	3.5	21
72	Research Note: Duck plague virus glycoprotein I influences cell–cell spread and final envelope acquisition. Poultry Science, 2020, 99, 6647-6652.	3.4	1

#	Article	IF	CITATIONS
73	The Clustered Regularly Interspaced Short Palindromic Repeat System and Argonaute: An Emerging Bacterial Immunity System for Defense Against Natural Transformation?. Frontiers in Microbiology, 2020, 11, 593301.	3.5	1
74	Host shutoff activity of VHS and SOX-like proteins: role in viral survival and immune evasion. Virology Journal, 2020, 17, 68.	3.4	13
75	Development and evaluation of an indirect ELISA based on recombinant structural protein VP2 to detect antibodies against duck hepatitis A virus. Journal of Virological Methods, 2020, 282, 113903.	2.1	2
76	Duck Tembusu virus promotes the expression of suppressor of cytokine signaling 1 by downregulating miR-148a-5p to facilitate virus replication. Infection, Genetics and Evolution, 2020, 85, 104392.	2.3	6
77	cis -Acting Sequences and Secondary Structures in Untranslated Regions of Duck Tembusu Virus RNA Are Important for Cap-Independent Translation and Viral Proliferation. Journal of Virology, 2020, 94, .	3.4	10
78	Regulation of Apoptosis by Enteroviruses. Frontiers in Microbiology, 2020, 11, 1145.	3.5	11
79	Duck Enteritis Virus VP16 Antagonizes IFN- $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Mediated Antiviral Innate Immunity. Journal of Immunology Research, 2020, 2020, 1-13.	2.2	5
80	Duck IFIT5 differentially regulates Tembusu virus replication and inhibits virus-triggered innate immune response. Cytokine, 2020, 133, 155161.	3.2	7
81	Stabilization of a full-length infectious cDNA clone for duck Tembusu virus by insertion of an intron. Journal of Virological Methods, 2020, 283, 113922.	2.1	13
82	Isolation and Selection of Duck Primary Cells as Pathogenic and Innate Immunologic Cell Models for Duck Plague Virus. Frontiers in Immunology, 2020, 10, 3131.	4.8	9
83	DEF Cell-Derived Exosomal miR-148a-5p Promotes DTMUV Replication by Negative Regulating TLR3 Expression. Viruses, 2020, 12, 94.	3.3	12
84	Duplicate US1 Genes of Duck Enteritis Virus Encode a Non-essential Immediate Early Protein Localized to the Nucleus. Frontiers in Cellular and Infection Microbiology, 2020, 9, 463.	3.9	9
85	The Pivotal Roles of US3 Protein in Cell-to-Cell Spread and Virion Nuclear Egress of Duck Plague Virus. Scientific Reports, 2020, 10, 7181.	3.3	15
86	Autophagy Is a Potential Therapeutic Target Against Duck Tembusu Virus Infection in vivo. Frontiers in Cellular and Infection Microbiology, 2020, 10, 155.	3.9	2
87	Duck Tembusu Virus Utilizes miR-221-3p Expression to Facilitate Viral Replication via Targeting of Suppressor of Cytokine Signaling 5. Frontiers in Microbiology, 2020, 11, 596.	3.5	7
88	Duck plague virus gE serves essential functions during the virion final envelopment through influence capsids budding into the cytoplasmic vesicles. Scientific Reports, 2020, 10, 5658.	3.3	10
89	Binding of Duck Tembusu Virus Nonstructural Protein 2A to Duck STING Disrupts Induction of Its Signal Transduction Cascade To Inhibit Beta Interferon Induction. Journal of Virology, 2020, 94, .	3.4	32
90	Emergence of Escherichia coli isolates producing NDM-1 carbapenemase from waterfowls in Hainan island, China. Acta Tropica, 2020, 207, 105485.	2.0	4

#	Article	IF	CITATIONS
91	Universal RNA Secondary Structure Insight Into Mosquito-Borne Flavivirus (MBFV) cis-Acting RNA Biology. Frontiers in Microbiology, 2020, 11, 473.	3.5	7
92	Transcriptome analysis of duck embryo fibroblasts for the dynamic response to duck tembusu virus infection and dual regulation of apoptosis genes. Aging, 2020, 12, 17503-17527.	3.1	10
93	Duck interferon regulatory factor 7 (IRF7) can control duck Tembusu virus (DTMUV) infection by triggering type I interferon production and its signal transduction pathway. Cytokine, 2019, 113, 31-38.	3.2	31
94	Class 1 integrons as predominant carriers in Escherichia coli isolates from waterfowls in Hainan, China. Ecotoxicology and Environmental Safety, 2019, 183, 109514.	6.0	20
95	DprA Is Essential for Natural Competence in Riemerella anatipestifer and Has a Conserved Evolutionary Mechanism. Frontiers in Genetics, 2019, 10, 429.	2.3	15
96	Role of LptD in Resistance to Glutaraldehyde and Pathogenicity in Riemerella anatipestifer. Frontiers in Microbiology, 2019, 10, 1443.	3.5	6
97	Therapeutic effects of duck Tembusu virus capsid protein fused with staphylococcal nuclease protein to target Tembusu infection in vitro. Veterinary Microbiology, 2019, 235, 295-300.	1.9	7
98	Flavivirus RNA-Dependent RNA Polymerase Interacts with Genome UTRs and Viral Proteins to Facilitate Flavivirus RNA Replication. Viruses, 2019, 11, 929.	3.3	19
99	Binding of the Duck Tembusu Virus Protease to STING Is Mediated by NS2B and Is Crucial for STING Cleavage and for Impaired Induction of IFN-β. Journal of Immunology, 2019, 203, 3374-3385.	0.8	56
100	Apoptosis and Autophagy in Picornavirus Infection. Frontiers in Microbiology, 2019, 10, 2032.	3.5	20
101	Innate Immune Evasion of Alphaherpesvirus Tegument Proteins. Frontiers in Immunology, 2019, 10, 2196.	4.8	35
102	Mutations in VPO and 2C Proteins of Duck Hepatitis A Virus Type 3 Attenuate Viral Infection and Virulence. Vaccines, 2019, 7, 111.	4.4	5
103	Role of the gldK gene in the virulence of Riemerella anatipestifer. Poultry Science, 2019, 98, 2414-2421.	3.4	9
104	Comparative analysis reveals the Genomic Islands in Pasteurella multocida population genetics: on Symbiosis and adaptability. BMC Genomics, 2019, 20, 63.	2.8	9
105	Amyloid A amyloidosis secondary to avian tuberculosis in naturally infected domestic pekin ducks (Anas platyrhynchos domestica). Comparative Immunology, Microbiology and Infectious Diseases, 2019, 63, 136-141.	1.6	2
106	Genetically stable reporter virus, subgenomic replicon and packaging system of duck Tembusu virus based on a reverse genetics system. Virology, 2019, 533, 86-92.	2.4	20
107	First Report of Integrative Conjugative Elements in Riemerella anatipestifer Isolates From Ducks in China. Frontiers in Veterinary Science, 2019, 6, 128.	2.2	10
108	Rifampin resistance and its fitness cost in Riemerella anatipestifer. BMC Microbiology, 2019, 19, 107.	3.3	13

#	Article	IF	Citations
109	New Perspectives on Galleria mellonella Larvae as a Host Model Using Riemerella anatipestifer as a Proof of Concept. Infection and Immunity, 2019, 87, .	2.2	13
110	Biochemical characterization of recombinant Avihepatovirus 3C protease and its localization. Virology Journal, 2019, 16, 54.	3.4	10
111	Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Frontiers in Microbiology, 2019, 10, 941.	3.5	38
112	Comparative genomeâ€scale modelling of the pathogenic Flavobacteriaceae species <i>Riemerella anatipestifer</i> in China. Environmental Microbiology, 2019, 21, 2836-2851.	3.8	13
113	DHAV-1 Inhibits Type I Interferon Signaling to Assist Viral Adaption by Increasing the Expression of SOCS3. Frontiers in Immunology, 2019, 10, 731.	4.8	15
114	Molecular characterization and antiapoptotic function analysis of the duck plague virus Us5 gene. Scientific Reports, 2019, 9, 4851.	3.3	13
115	High prevalence of CTX-M belonging to ST410 and ST889 among ESBL producing E. coli isolates from waterfowl birds in China's tropical island, Hainan. Acta Tropica, 2019, 194, 30-35.	2.0	18
116	Growth characteristics of the novel goose parvovirus SD15 strain in vitro. BMC Veterinary Research, 2019, 15, 63.	1.9	5
117	Expression and purification of the truncated duck DTMUV NS5 protein and the subcellular localization of NS5 in vitro. Poultry Science, 2019, 98, 2989-2996.	3.4	6
118	Terminase Large Subunit Provides a New Drug Target for Herpesvirus Treatment. Viruses, 2019, 11, 219.	3.3	15
119	Development and evaluation of an indirect ELISA based on recombinant nonstructural protein 3A to detect antibodies to duck hepatitis A virus type 1. Journal of Virological Methods, 2019, 268, 56-61.	2.1	6
120	Duck Plague Virus Promotes DEF Cell Apoptosis by Activating Caspases, Increasing Intracellular ROS Levels and Inducing Cell Cycle S-Phase Arrest. Viruses, 2019, 11, 196.	3.3	13
121	The 164 K, 165 K, and 167 K residues of VP1 are vital for goose parvovirus proliferation in GEFs base PCR-based reverse genetics system. Virology Journal, 2019, 16, 136.	d on 3.4	1
122	The VP3 protein of duck hepatitis A virus mediates host cell adsorption and apoptosis. Scientific Reports, 2019, 9, 16783.	3.3	15
123	Heparin sulfate is the attachment factor of duck Tembus virus on both BHK21 and DEF cells. Virology Journal, 2019, 16, 134.	3.4	8
124	Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating Beclin-1-mediated autophagy. Virology Journal, 2019, 16, 144.	3.4	14
125	Prevalence of fluoroquinolone resistance and mutations in the gyrA, parC and parE genes of Riemerella anatipestifer isolated from ducks in China. BMC Microbiology, 2019, 19, 271.	3.3	7
126	CpG oligodeoxynucleotide-specific duck TLR21 mediates activation of NF-κB signaling pathway and plays an important role in the host defence of DPV infection. Molecular Immunology, 2019, 106, 87-98.	2.2	8

#	Article	IF	CITATIONS
127	Duck plague virus Glycoprotein J is functional but slightly impaired in viral replication and cell-to-cell spread. Scientific Reports, 2018, 8, 4069.	3.3	19
128	ATPase activity of GroEL is dependent on GroES and it is response for environmental stress in Riemerella anatipestifer. Microbial Pathogenesis, 2018, 121, 51-58.	2.9	8
129	The 164â€⁻K, 165â€⁻K and 167â€⁻K residues in 160YPVVKKPKLTEE171 are required for the nuclear import of good parvovirus VP1. Virology, 2018, 519, 17-22.	se 2.4	10
130	Molecular identification of goose (Anser cygnoide) suppressor ubiquitin-specific protease 18 (USP18) and the effects of goose IFN and TMUV on its comparative transcripts. Poultry Science, 2018, 97, 1022-1031.	3.4	0
131	Tripartite motifâ€containing proteins precisely and positively affect host antiviral immune response. Scandinavian Journal of Immunology, 2018, 87, e12669.	2.7	8
132	Duck stimulator of interferon genes plays an important role in host anti-duck plague virus infection through an IFN-dependent signalling pathway. Cytokine, 2018, 102, 191-199.	3.2	25
133	A novel resistance gene, lnu (H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2. International Journal of Antimicrobial Agents, 2018, 51, 136-139.	2.5	35
134	Oral immunization with a <i>Lactobacillus casei</i> based anti-porcine epidemic diarrhoea virus (PEDV) vaccine expressing microfold cell-targeting peptide Co1 fused with the COE antigen of PEDV. Journal of Applied Microbiology, 2018, 124, 368-378.	3.1	27
135	Molecular epidemiology of duck hepatitis a virus types 1 and 3 in China, $2010-2015$. Transboundary and Emerging Diseases, 2018 , 65 , $10-15$.	3.0	62
136	Programmed cell death: the battlefield between the host and alpha-herpesviruses and a potential avenue for cancer treatment. Oncotarget, 2018, 9, 30704-30719.	1.8	10
137	US10 Protein Is Crucial but not Indispensable for Duck Enteritis Virus Infection in Vitro. Scientific Reports, 2018, 8, 16510.	3.3	10
138	DHAV-1 2A1 Peptide – A Newly Discovered Co-expression Tool That Mediates the Ribosomal "Skipping― Function. Frontiers in Microbiology, 2018, 9, 2727.	3.5	12
139	Induction of a protective response in ducks vaccinated with a DNA vaccine encoding engineered duck circovirus Capsid protein. Veterinary Microbiology, 2018, 225, 40-47.	1.9	7
140	Co-localization of and interaction between duck enteritis virus glycoprotein H and L. BMC Veterinary Research, 2018, 14, 255.	1.9	6
141	Transcriptomic Characterization of a Chicken Embryo Model Infected With Duck Hepatitis A Virus Type 1. Frontiers in Immunology, 2018, 9, 1845.	4.8	20
142	Analysis of the microRNA expression profiles in DEF cells infected with duck Tembusu virus. Infection, Genetics and Evolution, 2018, 63, 126-134.	2.3	14
143	Multiple genetic tools for editing the genome of Riemerella anatipestifer using a counterselectable marker. Applied Microbiology and Biotechnology, 2018, 102, 7475-7488.	3.6	17
144	Conserved Active-Site Residues Associated with OAS Enzyme Activity and Ubiquitin-Like Domains Are Not Required for the Antiviral Activity of goOASL Protein against Avian Tembusu Virus. Viruses, 2018, 10, 371.	3. 3	6

#	Article	IF	CITATIONS
145	Cas1 and Cas2 From the Type II-C CRISPR-Cas System of Riemerella anatipestifer Are Required for Spacer Acquisition. Frontiers in Cellular and Infection Microbiology, 2018, 8, 195.	3.9	15
146	Various Profiles of tet Genes Addition to tet(X) in Riemerella anatipestifer Isolates From Ducks in China. Frontiers in Microbiology, 2018, 9, 585.	3.5	48
147	The 125th Lys and 145th Thr Amino Acids in the GTPase Domain of Goose Mx Confer Its Antiviral Activity against the Tembusu Virus. Viruses, 2018, 10, 361.	3.3	1
148	Roles of B739_1343 in iron acquisition and pathogenesis in Riemerella anatipestifer CH-1 and evaluation of the RA-CH-11"B739_1343 mutant as an attenuated vaccine. PLoS ONE, 2018, 13, e0197310.	2.5	22
149	Establishment of a reverse genetics system for duck Tembusu virus to study virulence and screen antiviral genes. Antiviral Research, 2018, 157, 120-127.	4.1	34
150	Regulated delayed attenuation enhances the immunogenicity and protection provided by recombinant Salmonellaenterica serovar Typhimurium vaccines expressing serovar Choleraesuis O-polysaccharides. Vaccine, 2018, 36, 5010-5019.	3.8	6
151	Flaviviridae virus nonstructural proteins 5 and 5A mediate viral immune evasion and are promising targets in drug development., 2018, 190, 1-14.		10
152	Molecular characterization of duck enteritis virus UL41 protein. Virology Journal, 2018, 15, 12.	3.4	18
153	Cytokine storms are primarily responsible for the rapid death of ducklings infected with duck hepatitis A virus type 1. Scientific Reports, 2018, 8, 6596.	3.3	32
154	Incompatible Translation Drives a Convergent Evolution and Viral Attenuation During the Development of Live Attenuated Vaccine. Frontiers in Cellular and Infection Microbiology, 2018, 8, 249.	3.9	13
155	Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism. Viruses, 2018, 10, 409.	3.3	66
156	Use of Natural Transformation To Establish an Easy Knockout Method in Riemerella anatipestifer. Applied and Environmental Microbiology, 2017, 83, .	3.1	54
157	The suppression of apoptosis by α-herpesvirus. Cell Death and Disease, 2017, 8, e2749-e2749.	6.3	68
158	Identification of Type III Interferon (IFN-λ) in Chinese Goose: Gene Structure, Age-Dependent Expression Profile, and Antiviral Immune Characteristics <i>In Vivo</i> and <i>In Vitro</i> . Journal of Interferon and Cytokine Research, 2017, 37, 269-277.	1.2	4
159	Preliminary study of the UL55 gene based on infectious Chinese virulent duck enteritis virus bacterial artificial chromosome clone. Virology Journal, 2017, 14, 78.	3.4	22
160	Molecular identification and immunological characteristics of goose suppressor of cytokine signaling 1 (SOCS-1) in vitro and vivo following DTMUV challenge. Cytokine, 2017, 93, 1-9.	3.2	3
161	Identification of a wza -like gene involved in capsule biosynthesis, pathogenicity and biofilm formation in Riemerella anatipestifer. Microbial Pathogenesis, 2017, 107, 442-450.	2.9	26
162	Prokaryotic expression of a codon-optimized capsid gene from duck circovirus and its application to an indirect ELISA. Journal of Virological Methods, 2017, 247, 1-5.	2.1	14

#	Article	IF	CITATIONS
163	Role of duck plague virus glycoprotein C in viral adsorption: Absence of specific interactions with cell surface heparan sulfate. Journal of Integrative Agriculture, 2017, 16, 1145-1152.	3.5	6
164	The 3D protein of duck hepatitis A virus type 1 binds to a viral genomic 3′ UTR and shows RNA-dependent RNA polymerase activity. Virus Genes, 2017, 53, 831-839.	1.6	21
165	Complete Genome Sequence of a Novel Goose Parvovirus Isolated in Sichuan Province, China, in 2016. Genome Announcements, 2017, 5, .	0.8	2
166	The duck enteritis virus early protein, UL13, found in both nucleus and cytoplasm, influences viral replication in cell culture. Poultry Science, 2017, 96, 2899-2907.	3.4	18
167	Identification of the ferric iron utilization gene B739_1208 and its role in the virulence of R. anatipestifer CH-1. Veterinary Microbiology, 2017, 201, 162-169.	1.9	30
168	Development of an immunochromatographic strip for detection of antibodies against duck Tembusu virus. Journal of Virological Methods, 2017, 249, 137-142.	2.1	21
169	Differential immune-related gene expression in the spleens of duck Tembusu virus-infected goslings. Veterinary Microbiology, 2017, 212, 39-47.	1.9	32
170	Regulation of viral gene expression by duck enteritis virus UL54. Scientific Reports, 2017, 7, 1076.	3.3	11
171	Recombinant attenuated Salmonella Typhimurium with heterologous expression of the Salmonella Choleraesuis O-polysaccharide: high immunogenicity and protection. Scientific Reports, 2017, 7, 7127.	3.3	6
172	Genome Sequence of a Goose Parvovirus Strain Isolated from an III Goose in China. Genome Announcements, 2017, 5, .	0.8	6
173	Cleavage of poly(A)-binding protein by duck hepatitis A virus 3C protease. Scientific Reports, 2017, 7, 16261.	3.3	39
174	The role of nuclear localization signal in parvovirus life cycle. Virology Journal, 2017, 14, 80.	3.4	24
175	GoTLR7 but not GoTLR21 mediated antiviral immune responses against low pathogenic H9N2 AIV and Newcastle disease virus infection. Immunology Letters, 2017, 181, 6-15.	2.5	8
176	Duck enteritis virus (DEV) UL54 protein, a novel partner, interacts with DEV UL24 protein. Virology Journal, 2017, 14, 166.	3.4	9
177	Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins. Viruses, 2017, 9, 291.	3.3	79
178	Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice. Frontiers in Cellular and Infection Microbiology, 2017, 7, 391.	3.9	15
179	Goose Mx and OASL Play Vital Roles in the Antiviral Effects of Type I, II, and III Interferon against Newly Emerging Avian Flavivirus. Frontiers in Immunology, 2017, 8, 1006.	4.8	26
180	Virologic and Immunologic Characteristics in Mature Ducks with Acute Duck Hepatitis A Virus 1 Infection. Frontiers in Immunology, 2017, 8, 1574.	4.8	23

#	Article	IF	Citations
181	Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins. Frontiers in Microbiology, 2017, 8, 1373.	3.5	45
182	Contribution of RaeB, a Putative RND-Type Transporter to Aminoglycoside and Detergent Resistance in Riemerella anatipestifer. Frontiers in Microbiology, 2017, 8, 2435.	3.5	38
183	Identification of IFITM1 and IFITM3 in Goose: Gene Structure, Expression Patterns, and Immune Reponses against Tembusu Virus Infection. BioMed Research International, 2017, 2017, 1-13.	1.9	10
184	Identifying the Genes Responsible for Iron-Limited Condition in <i> Riemerella anatipestifer</i> CH-1 through RNA-Seq-Based Analysis. BioMed Research International, 2017, 2017, 1-10.	1.9	22
185	Comparative analysis of virus-host interactions caused by a virulent and an attenuated duck hepatitis A virus genotype 1. PLoS ONE, 2017, 12, e0178993.	2.5	35
186	RNA-seq comparative analysis of Peking ducks spleen gene expressionÂ24Âh post-infected with duck plague virulent or attenuated virus. Veterinary Research, 2017, 48, 47.	3.0	18
187	Molecular characterization of the duck enteritis virus US10 protein. Virology Journal, 2017, 14, 183.	3.4	14
188	The neglected avian hepatotropic virus induces acute and chronic hepatitis in ducks: an alternative model for hepatology. Oncotarget, 2017, 8, 81838-81851.	1.8	25
189	Viral-host interaction in kidney reveals strategies to escape host immunity and persistently shed virus to the urine. Oncotarget, 2017, 8, 7336-7349.	1.8	28
190	Cross-species antiviral activity of goose interferon lambda against duck plague virus is related to its positive self-regulatory feedback loop. Journal of General Virology, 2017, 98, 1455-1466.	2.9	5
191	An updated review of avian-origin Tembusu virus: a newly emerging avian Flavivirus. Journal of General Virology, 2017, 98, 2413-2420.	2.9	88
192	Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens. International Journal of Molecular Sciences, 2016, 17, 1990.	4.1	11
193	TRIM25 Identification in the Chinese Goose: Gene Structure, Tissue Expression Profiles, and Antiviral Immune Responses In Vivo and In Vitro. BioMed Research International, 2016, 2016, 1-14.	1.9	10
194	Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells. Viruses, 2016, 8, 82.	3.3	103
195	Cross-Species Antiviral Activity of Goose Interferons against Duck Plague Virus Is Related to Its Positive Self-Feedback Regulation and Subsequent Interferon Stimulated Genes Induction. Viruses, 2016, 8, 195.	3.3	15
196	LPAIV H9N2 Drives the Differential Expression of Goose Interferons and Proinflammatory Cytokines in Both In Vitro and In Vivo Studies. Frontiers in Microbiology, 2016, 7, 166.	3.5	7
197	Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer. International Journal of Molecular Sciences, 2016, 17, 1304.	4.1	26
198	Complete genome sequence of the novel duck hepatitis B virus strain SCP01 from Sichuan Cherry Valley duck. SpringerPlus, 2016, 5, 1353.	1.2	6

#	Article	IF	CITATIONS
199	Investigation of TbfA in Riemerella anatipestifer using plasmid-based methods for gene over-expression and knockdown. Scientific Reports, 2016, 6, 37159.	3.3	51
200	Antigen distribution of TMUV and GPV are coincident with the expression profiles of CD8 \hat{l} ±-positive cells and goose IFN \hat{l} ³ . Scientific Reports, 2016, 6, 25545.	3.3	17
201	Characterization of nucleocytoplasmic shuttling and intracellular localization signals in Duck Enteritis Virus UL54. Biochimie, 2016, 127, 86-94.	2.6	13
202	Development and evaluation of indirect ELISAs for the detection of IgG, IgM and IgA1 against duck hepatitis A virus 1. Journal of Virological Methods, 2016, 237, 79-85.	2.1	26
203	A one-step duplex rRT-PCR assay for the simultaneous detection of duck hepatitis A virus genotypes 1 and 3. Journal of Virological Methods, 2016, 236, 207-214.	2.1	31
204	Identification of <i>2′-5′-Oligoadenylate Synthetase-Like</i> Patterns, and Antiviral Activity Against Newcastle Disease Virus. Journal of Interferon and Cytokine Research, 2016, 36, 563-572.	1.2	25
205	Comparative genomic analysis identifies structural features of CRISPR-Cas systems in Riemerella anatipestifer. BMC Genomics, 2016, 17, 689.	2.8	21
206	The 2A2 protein of Duck hepatitis A virus type 1 induces apoptosis in primary cell culture. Virus Genes, 2016, 52, 780-788.	1.6	35
207	Genome Sequence of Riemerella anatipestifer Strain RCAD0122, a Multidrug-Resistant Isolate from Ducks. Genome Announcements, 2016, 4, .	0.8	23
208	CpG oligodeoxynucleotide-specific goose TLR21 initiates an anti-viral immune response against NGVEV but not AIV strain H9N2 infection. Immunobiology, 2016, 221, 454-461.	1.9	11
209	Molecular identification and comparative transcriptional analysis of myxovirus resistance GTPase (Mx) gene in goose (Anser cygnoide) after H9N2 AIV infection. Comparative Immunology, Microbiology and Infectious Diseases, 2016, 47, 32-40.	1.6	15
210	Development of a Cell Marker ELISA for the Detection of Goose T Cell Surface CD8α Molecules. Applied Biochemistry and Biotechnology, 2016, 179, 531-544.	2.9	2
211	The Detection of Hemin-Binding Proteins in Riemerella anatipestifer CH-1. Current Microbiology, 2016, 72, 152-158.	2.2	11
212	Rescue of a duck circovirus from an infectious DNA clone in ducklings. Virology Journal, 2015, 12, 82.	3.4	13
213	Role of capsid proteins in parvoviruses infection. Virology Journal, 2015, 12, 114.	3.4	47
214	Duck enteritis virus UL54 is an IE protein primarily located in the nucleus. Virology Journal, 2015, 12, 198.	3.4	24
215	Identification and characterization of the duck enteritis virus (DEV) US2 gene. Genetics and Molecular Research, 2015, 14, 13779-13790.	0.2	14
216	Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose. International Journal of Molecular Sciences, 2015, 16, 22904-22926.	4.1	19

#	Article	IF	CITATIONS
217	TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization. PLoS ONE, 2015, 10, e0127506.	2.5	35
218	Identification, Characterization, and Developmental Expression Pattern of Type III Interferon Receptor Gene in the Chinese Goose. BioMed Research International, 2015, 2015, 1-11.	1.9	4
219	Identification of Type II Interferon Receptors in Geese: Gene Structure, Phylogenetic Analysis, and Expression Patterns. BioMed Research International, 2015, 2015, 1-14.	1.9	1
220	Analysis of synonymous codon usage pattern in duck circovirus. Gene, 2015, 557, 138-145.	2.2	12
221	Molecular cloning, tissue distribution, and immune function of goose TLR7. Immunology Letters, 2015, 163, 135-142.	2.5	13
222	Age-related development and tissue distribution of T cell markers (CD4 and CD8a) in Chinese goose. Immunobiology, 2015, 220, 753-761.	1.9	7
223	Immunobiological activity and antiviral regulation efforts of Chinese goose (Anser cygnoides) CD8α during NGVEV and GPV infection. Poultry Science, 2015, 94, 17-24.	3.4	11
224	Evolutionary characterization of Tembusu virus infection through identification of codon usage patterns. Infection, Genetics and Evolution, 2015, 35, 27-33.	2.3	18
225	Type I interferon receptors in goose: Molecular cloning, structural identification, evolutionary analysis and age-related tissue expression profile. Gene, 2015, 561, 35-44.	2.2	6
226	Development and evaluation of live attenuated Salmonella vaccines in newly hatched duckings. Vaccine, 2015, 33, 5564-5571.	3.8	10
227	Promoter mutation and reduced expression of BRCA1 in canine mammary tumors. Research in Veterinary Science, 2015, 103, 143-148.	1.9	9
228	Development and validation of a SYBR Green real-time PCR assay for rapid and quantitative detection of goose interferons and proinflammatory cytokines. Poultry Science, 2015, 94, 2382-2387.	3.4	7
229	Development of an indirect ELISA method based on the VP3 protein of duck hepatitis A virus type 1 (DHAV-1) for dual detection of DHAV-1 and DHAV-3 antibodies. Journal of Virological Methods, 2015, 225, 30-34.	2.1	34
230	Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiology, 2015, 10, 1529-1542.	2.0	25
231	Identification and molecular characterization of a novel duck Tembusu virus isolate from Southwest China. Archives of Virology, 2015, 160, 2781-2790.	2.1	55
232	The pregenome/C RNA of duck hepatitis B virus is not used for translation of core protein during the early phase of infection in vitro. Virus Research, 2015, 196, 13-19.	2.2	1
233	Molecular characterization of duck enteritis virus CHv strain UL49.5 protein and its colocalization with glycoprotein M. Journal of Veterinary Science, 2014, 15, 389.	1.3	7
234	Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation. International Journal of Molecular Sciences, 2014, 15, 21045-21068.	4.1	32

#	Article	IF	CITATIONS
235	Cloning, expression and purification of duck hepatitis B virus (DHBV) core protein and its use in the development of an indirect ELISA for serologic detection of DHBV infection. Archives of Virology, 2014, 159, 897-904.	2.1	12
236	Detection, differentiation, and VP1 sequencing of duck hepatitis A virus type 1 and type 3 by a 1-step duplex reverse-transcription PCR assay. Poultry Science, 2014, 93, 2184-2192.	3.4	29
237	Comparative genomics of Riemerella anatipestifer reveals genetic diversity. BMC Genomics, 2014, 15, 479.	2.8	60
238	In vitro expression and development of indirect ELISA for Capsid protein of duck circovirus without nuclear localization signal. International Journal of Clinical and Experimental Pathology, 2014, 7, 4938-44.	0.5	4
239	Distribution characteristics of DNA vaccine encoded with glycoprotein C from Anatid herpesvirus 1 with chitosan and liposome as deliver carrier in ducks. Virology Journal, 2013, 10, 89.	3.4	16
240	The transcription analysis of duck enteritis virus UL49.5 gene using real-time quantitative reverse transcription PCR. Virus Genes, 2013, 47, 298-304.	1.6	13
241	Recombinant UL16 antigen-based indirect ELISA for serodiagnosis of duck viral enteritis. Journal of Virological Methods, 2013, 189, 105-109.	2.1	2
242	Innate sensing of viruses by pattern recognition receptors in birds. Veterinary Research, 2013, 44, 82.	3.0	128
243	Investigating effects of between- and within-host variability on Escherichia coli O157 shedding pattern and transmission. Preventive Veterinary Medicine, 2013, 109, 47-57.	1.9	14
244	Complete Genomic Sequence of Chinese Virulent Duck Enteritis Virus. Journal of Virology, 2012, 86, 5965-5965.	3.4	86
245	Comparative Genomic Analysis of Duck Enteritis Virus Strains. Journal of Virology, 2012, 86, 13841-13842.	3.4	50
246	Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Veterinary Research, 2012, 43, 56.	3.0	21
247	Computational identification of microRNAs in Anatid herpesvirus 1 genome. Virology Journal, 2012, 9, 93.	3.4	10
248	Replication kinetics of duck enteritis virus UL16 gene in vitro. Virology Journal, 2012, 9, 281.	3.4	12
249	Apoptosis induced <i>in vivo</i> by new type gosling viral enteritis virus. Journal of Veterinary Science, 2011, 12, 333.	1.3	1
250	Efficacy study and field application of an inactivated new type gosling viral enteritis virus vaccine for domestic geese. Poultry Science, 2011, 90, 766-774.	3.4	0
251	Histopathology, immunohistochemistry, in situ apoptosis, and ultrastructure characterization of the digestive and lymphoid organs of new type gosling viral enteritis virus experimentally infected gosling. Poultry Science, 2010, 89, 668-680.	3.4	8
252	Humoral and cellular immune responses in adult geese induced by an inactivated vaccine against new type gosling viral enteritis virus. Poultry Science, 2010, 89, 2410-2418.	3 . 4	3

#	Article	IF	CITATIONS
253	Detection and localization of a goose adenovirus in experimentally infected goslings, using indirect immunofluorescence with paraffin-embedded tissue sections. Avian Pathology, 2009, 38, 167-174.	2.0	9
254	Anatid herpesvirus 1 CH virulent strain induces syncytium and apoptosis in duck embryo fibroblast cultures. Veterinary Microbiology, 2009, 138, 258-265.	1.9	24
255	Immunohistochemical detection and localization of new type gosling viral enteritis virus in paraformaldehyde-fixed paraffin-embedded tissue. Veterinary Immunology and Immunopathology, 2009, 130, 226-235.	1.2	25
256	Development of TaqMan® MGB fluorescent real-time PCR assay for the detection of anatid herpesvirus 1. Virology Journal, 2009, 6, 71.	3.4	36
257	Morphologic Observations of New Type Gosling Viral Enteritis Virus (NGVEV) Virulent Isolate in Infected Duck Embryo Fibroblasts. Avian Diseases, 2008, 52, 173-178.	1.0	12
258	Persistent effect of in utero meso-2,3-dimercaptosuccinic acid (DMSA) on immune function and lead-induced immunotoxicity. Toxicology, 1999, 132, 67-79.	4.2	67
259	Molecular Cloning and Disease Association of Hepatitis G Virus: A Transfusion-Transmissible Agent. Science, 1996, 271, 505-508.	12.6	1,433
260	Duck Plague Virus Negatively Regulates IFN Signaling to Promote Virus Proliferation via JNK Signaling Pathway. Frontiers in Immunology, 0, 13 , .	4.8	1