Qi Wu

List of Publications by Citations

Source: https://exaly.com/author-pdf/597865/qi-wu-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

54	1,161	21	32
papers	citations	h-index	g-index
57	1,330 ext. citations	5.9	4.22
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
54	New GO-PEI-Au-L-Cys ZIC-HILIC composites: synthesis and selective enrichment of glycopeptides. <i>Nanoscale</i> , 2014 , 6, 5616-9	7.7	85
53	Recent advances on multidimensional liquid chromatography-mass spectrometry for proteomics: from qualitative to quantitative analysisa review. <i>Analytica Chimica Acta</i> , 2012 , 731, 1-10	6.6	79
52	Hydrophilic GO/Fe3O4/Au/PEG nanocomposites for highly selective enrichment of glycopeptides. <i>Nanoscale</i> , 2016 , 8, 4894-7	7.7	68
51	Boronate affinity monolith with a gold nanoparticle-modified hydrophilic polymer as a matrix for the highly specific capture of glycoproteins. <i>Chemistry - A European Journal</i> , 2014 , 20, 8737-43	4.8	59
50	Integrated sample pretreatment system for N-linked glycosylation site profiling with combination of hydrophilic interaction chromatography and PNGase F immobilized enzymatic reactor via a strong cation exchange precolumn. <i>Analytical Chemistry</i> , 2011 , 83, 7457-63	7.8	55
49	Epitope imprinted polyethersulfone beads by self-assembly for target protein capture from the plasma proteome. <i>Chemical Communications</i> , 2014 , 50, 9521-4	5.8	47
48	Boronic Acid-Functionalized Particles with Flexible Three-Dimensional Polymer Branch for Highly Specific Recognition of Glycoproteins. <i>ACS Applied Materials & Distriction of Communication of Communication and Polymer Branch for Highly Specific Recognition of Glycoproteins. ACS Applied Materials & District Recognition of Communication (Communication) and Polymer Branch for Highly Specific Recognition of Glycoproteins. ACS Applied Materials & District Recognition (Communication) and Polymer Branch for Highly Specific Recognition of Glycoproteins. ACS Applied Materials & District Recognition (Communication) and Polymer Branch for Highly Specific Recognition (Communication) and Polymer Branch for Highly (Communication) and Polymer Branch</i>	9.5	47
47	An efficient approach to prepare boronate core-shell polymer nanoparticles for glycoprotein recognition via combined distillation precipitation polymerization and RAFT media precipitation polymerization. <i>Chemical Communications</i> , 2015 , 51, 3896-8	5.8	44
46	1-Dodecyl-3-methylimidazolium chloride-assisted sample preparation method for efficient integral membrane proteome analysis. <i>Analytical Chemistry</i> , 2014 , 86, 7544-50	7.8	42
45	Gold nanoparticles immobilized hydrophilic monoliths with variable functional modification for highly selective enrichment and on-line deglycosylation of glycopeptides. <i>Analytica Chimica Acta</i> , 2015 , 900, 83-9	6.6	40
44	Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography. <i>Journal of Chromatography A</i> , 2017 , 1492, 61-69	4.5	38
43	Mass defect-based pseudo-isobaric dimethyl labeling for proteome quantification. <i>Analytical Chemistry</i> , 2013 , 85, 10658-63	7.8	38
42	Synthesis of Zwitterionic Polymer Particles via Combined Distillation Precipitation Polymerization and Click Chemistry for Highly Efficient Enrichment of Glycopeptide. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 22018-24	9.5	37
41	CHIP Regulates Aquaporin-2 Quality Control and Body Water Homeostasis. <i>Journal of the American Society of Nephrology: JASN</i> , 2018 , 29, 936-948	12.7	36
40	Preparation of hydrophilic monolithic capillary column by in situ photo-polymerization of N-vinyl-2-pyrrolidinone and acrylamide for highly selective and sensitive enrichment of N-linked glycopeptides. <i>Talanta</i> , 2016 , 146, 225-30	6.2	35
39	Nanocellulose 3, 5-Dimethylphenylcarbamate Derivative Coated Chiral Stationary Phase: Preparation and Enantioseparation Performance. <i>Chirality</i> , 2016 , 28, 376-81	2.1	26
38	Rapid Aldosterone-Mediated Signaling in the DCT Increases Activity of the Thiazide-Sensitive NaCl Cotransporter. <i>Journal of the American Society of Nephrology: JASN</i> , 2019 , 30, 1454-1470	12.7	25

Characterization of AQPs in Mouse, Rat, and Human Colon and Their Selective Regulation by Bile Acids. <i>Frontiers in Nutrition</i> , 2016 , 3, 46	6.2	25	
An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling. <i>Analytica Chimica Acta</i> , 2014 , 833, 1-8	6.6	23	
Graphene quantum dots functionalized Eyclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance. <i>Journal of Chromatography A</i> , 2019 , 1600, 209-218	4.5	22	
Monodisperse boronate polymeric particles synthesized by a precipitation polymerization strategy: particle formation and glycoprotein response from the standpoint of the Flory-Huggins model. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 Materials 2014, 6, 2059-66	9.5	22	
A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. <i>Journal of Chromatography A</i> , 2012 , 1246, 111-6	4.5	21	
Graphene quantum dots-functionalized C hydrophobic/hydrophilic stationary phase for high performance liquid chromatography. <i>Talanta</i> , 2019 , 194, 105-113	6.2	18	
Biphasic microreactor for efficient membrane protein pretreatment with a combination of formic acid assisted solubilization, on-column pH adjustment, reduction, alkylation, and tryptic digestion. <i>Analytical Chemistry</i> , 2013 , 85, 8507-12	7.8	17	
A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells. <i>Scientific Reports</i> , 2015 , 5, 12829	4.9	17	
Ionic liquid-functionalized graphene quantum dot-bonded silica as multi-mode HPLC stationary phase with enhanced selectivity for acid compounds. <i>New Journal of Chemistry</i> , 2018 , 42, 8672-8680	3.6	16	
Activation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kidney principal cells. <i>American Journal of Physiology - Renal Physiology</i> , 2016 , 311, F890-F900	4.3	16	
NSI and NSMT: usages of MS/MS fragment ion intensity for sensitive differential proteome detection and accurate protein fold change calculation in relative label-free proteome quantification. <i>Analyst, The</i> , 2012 , 137, 3146-53	5	14	
The murine choroid plexus epithelium expresses the 2Cl/H exchanger ClC-7 and Na/H exchanger NHE6 in the luminal membrane domain. <i>American Journal of Physiology - Cell Physiology</i> , 2018 , 314, C4	39 ⁵ C 44	8 ¹²	
imFASP: An integrated approach combining in-situ filter-aided sample pretreatment with microwave-assisted protein digestion for fast and efficient proteome sample preparation. <i>Analytica Chimica Acta</i> , 2016 , 912, 58-64	6.6	11	
Prefractionation and separation by C8 stationary phase: effective strategies for integral membrane proteins analysis. <i>Talanta</i> , 2012 , 88, 567-72	6.2	11	
The thiazide sensitive sodium chloride co-transporter NCC is modulated by site-specific ubiquitylation. <i>Scientific Reports</i> , 2017 , 7, 12981	4.9	10	
A paired ions scoring algorithm based on Morpheus for simultaneous identification and quantification of proteome samples prepared by isobaric peptide termini labeling strategies. <i>Proteomics</i> , 2015 , 15, 1781-8	4.8	10	
Pseudo isobaric peptide termini labelling for relative proteome quantification by SWATH MS acquisition. <i>Analyst, The</i> , 2016 , 141, 4912-8	5	9	
Preparation and chromatographic performance of a multifunctional immobilized chiral stationary phase based on dialdehyde microcrystalline cellulose derivatives. <i>Chirality</i> , 2019 , 31, 669-681	2.1	9	
	Acids. Frontiers in Nutrition, 2016, 3, 46 An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopetide enrichment, deglycosylation and dimethyl labeling. Analytica Chimica Acta, 2014, 833, 1-8 Graphene quantum dots functionalized Bryclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance. Journal of Chromatography A, 2019, 1600, 209-218 Monodisperse boronate polymeric particles synthesized by a precipitation polymerization strategy: particle formation and glycoprotein response from the standpoint of the Flory-Huggins model. ACS Applied Materials & Ampl. Interfaces, 2014, 6, 2059-66 A hydrophillic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Journal of Chromatography A, 2012, 1246, 111-6 Graphene quantum dots-functionalized C hydrophobic/hydrophilic stationary phase for high performance liquid chromatography. Talanta, 2019, 194, 105-113 Biphasic microreactor for efficient membrane protein pretreatment with a combination of formic acid assisted solubilization, on-column pH adjustment, reduction, alkylation, and tryptic digestion. Analytical Chemistry, 2013, 85, 8507-12 A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells. Scientific Reports, 2015, 5, 12829 Ionic liquid-Functionalized graphene quantum dot-bonded silica as multi-mode HPLC stationary phase with enhanced selectivity for acid compounds. New Journal of Chemistry, 2018, 42, 8672-8680 Activation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kidney principal cells. American Journal of Physiology, Physiology, 2018, 311, F890-F900 NSI and NSMT: usages of MS/MS fragment ion intensity for sensitive differential proteome detection and accurate protein fold change calculation in relative label-free proteome quantification. Analyst, The, 20	Acids. Frontiers in Nutrition, 2016, 3, 46 An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling. Analytica Chimica Acta, 2014, 833, 1-8 Graphene quantum dots functionalized Byclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance. Journal of Chromatography A, 2019, 1600, 209-218 4-5 Monodisperse boronate polymeric particles synthesized by a precipitation polymerization strategy: particle formation and glycoprotein response from the standpoint of the Flory-Huggins model. ACS Applied Materials & Amplied Immobilized trypsin reactor with N-vinyl-2-pyrrollidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Journal of Chromatography A, 2012, 1246, 111-6 Graphene quantum dost-functionalized C hydrophobic/hydrophilic stationary phase for high performance liquid chromatography. Talanta, 2019, 194, 105-113 Biphasic microreactor for efficient membrane protein pretreatment with a combination of formic acid assisted solubilization, on-column pH adjustment, reduction, alkylation, and tryptic digestion. Analytical Chemistry, 2013, 85, 8507-12 A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells. Scientific Reports, 2015, 5, 12829 Ionic liquid-functionalized graphene quantum dot-bonded silica as multi-mode HPLC stationary phase with enhanced selectivity for acid compounds. New Journal of Chemistry, 2018, 42, 8672-8680 Activation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kindeny principal cells. American Journal of Physiology. Renal Physiology, 2016, 311, R890-F900 NSI and NSMT: usages of MS/MS fragment ion intensity for sensitive differential proteome detection and accurate protein fold change calculation in relative label-free proteome 15 quantification. Analyst, The, 2012, 137, 3146-53 The muri	Acids. Frontiers in Nutrition, 2016, 3, 46 An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling. Analytica Chimica Acta, 2014, 833, 1-8 Graphene quantum dots functionalized ftyclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance. Journal of Chromatography A, 2019, 1600, 209-218 Monodisperse boronate polymeric particles synthesized by a precipitation polymerization strategy: particle formation and glycoprotein response from the standpoint of the Flory-Huggins model. ACS Applied Materials &, interfaces, 2014, 6, 2059-66 A hydrophilic Immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Journal of Chromatography A, 2012, 1246, 111-6 Graphene quantum dots-functionalized C hydrophobic/hydrophilic stationary phase for high performance liquid chromatography. Talanta, 2019, 194, 105-113 Bliphasic microreactor for efficient membrane protein pretreatment with a combination of Formic acid assisted solubilization, on-column pH adjustment, reduction, alkylation, and tryptic digestion. Analytical Chemistry, 2013, 85, 8507-12 A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells. Scientific Reports, 2015, 5, 12829 lonic liquid-functionalized graphene quantum dot-bonded silica as multi-mode HPLC stationary phase with enhanced selectivity for acid compounds. New Journal of Chemistry, 2018, 42, 8672-8680 ACtivation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kidney principal cells. American Journal of Physiology, 2016, 311, F890-F900 NSI and NSMT: usages of MS/MS fragment ion intensity for sensitive differential proteome quantification and accurate protein fold change calculation in relative label-free proteome quantification and separation by C8 stat

19	Partially isobaric peptide termini labeling assisted proteome quantitation based on MS and MS/MS signals. <i>Journal of Proteomics</i> , 2015 , 114, 152-60	3.9	8
18	Nanocellulose Derivative/Silica Hybrid Core-Shell Chiral Stationary Phase: Preparation and Enantioseparation Performance. <i>Molecules</i> , 2016 , 21,	4.8	8
17	Glycoprotein recognition by water-compatible core-shell polymeric submicron particles. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3927-3930	7.3	7
16	Nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate)-silica hybrid sol immobilized on open tubular capillary column for capillary electrochromatography enantioseparation. <i>Electrophoresis</i> , 2018 , 39, 1086	5 ³ 1695	6
15	A robust and effective intact protein fractionation strategy by GO/PEI/Au/PEG nanocomposites for human plasma proteome analysis. <i>Talanta</i> , 2018 , 178, 49-56	6.2	6
14	Dysregulation of Principal Cell miRNAs Facilitates Epigenetic Regulation of AQP2 and Results in Nephrogenic Diabetes Insipidus. <i>Journal of the American Society of Nephrology: JASN</i> , 2021 , 32, 1339-13	5 ^{12.7}	6
13	Fast MS/MS acquisition without dynamic exclusion enables precise and accurate quantification of proteome by MS/MS fragment intensity. <i>Scientific Reports</i> , 2016 , 6, 26392	4.9	5
12	Decrease of dynamic range of proteins in human plasma by ampholine immobilized polymer microspheres. <i>Analytica Chimica Acta</i> , 2014 , 826, 43-50	6.6	5
11	Genetic disruption of slc4a10 alters the capacity for cellular metabolism and vectorial ion transport in the choroid plexus epithelium. <i>Fluids and Barriers of the CNS</i> , 2020 , 17, 2	7	4
10	SDS-PAGE-free protocol for comprehensive identification of cytochrome P450 enzymes and uridine diphosphoglucuronosyl transferases in human liver microsomes. <i>Proteomics</i> , 2012 , 12, 3464-9	4.8	4
9	The Cl/HCO exchanger pendrin is downregulated during oral co-administration of exogenous mineralocorticoid and KCl in patients with primary aldosteronism. <i>Journal of Human Hypertension</i> , 2021 , 35, 837-848	2.6	4
8	Improved accuracy for label-free absolute quantification of proteome by combining the Absolute Protein EXpression profiling algorithm and summed tandem mass spectrometric total ion current. <i>Analyst, The</i> , 2014 , 139, 138-46	5	3
7	Large-Scale Proteomic Assessment of Urinary Extracellular Vesicles Highlights Their Reliability in Reflecting Protein Changes in the Kidney. <i>Journal of the American Society of Nephrology: JASN</i> , 2021 , 32, 2195-2209	12.7	3
6	SUMOylation Landscape of Renal Cortical Collecting Duct Cells. <i>Journal of Proteome Research</i> , 2019 , 18, 3640-3648	5.6	2
5	An in vivo protein landscape of the mouse DCT during high dietary K or low dietary Na intake. <i>American Journal of Physiology - Renal Physiology</i> , 2021 , 320, F908-F921	4.3	2
4	Label-free quantification of differentially expressed proteins in mouse liver cancer cells with high and low metastasis rates by a SWATH acquisition method. <i>Science China Chemistry</i> , 2014 , 57, 718-722	7.9	1
3	Urinary proteomics for kidney dysfunction: insights and trends. <i>Expert Review of Proteomics</i> , 2021 , 18, 437-452	4.2	1
2	The Hydrogen-Coupled Oligopeptide Membrane Cotransporter Pept2 is SUMOylated in Kidney Distal Convoluted Tubule Cells. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 790606	5.6	O

Improved Accuracy of Proteome Quantification by MS/MS Fragment Intensity. *FASEB Journal*, **2015**, 29, 567.9

0.9