
Asuncion Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5978521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Permanent Magnetism, Magnetic Anisotropy, and Hysteresis of Thiol-Capped Gold Nanoparticles. Physical Review Letters, 2004, 93, 087204.	2.9	513
2	Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass,) Tj ETQq0 0 C Applied Catalysis B: Environmental, 1995, 7, 49-63.) rgBT /Ov 10.8	verlock 10 Tf 475
3	Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz. Applied Catalysis B: Environmental, 1997, 13, 219-228.	10.8	415
4	Gold Glyconanoparticles as Water-Soluble Polyvalent Models To Study Carbohydrate Interactions. Angewandte Chemie - International Edition, 2001, 40, 2257-2261.	7.2	354
5	The state of the oxygen at the surface of polycrystalline cobalt oxide. Journal of Electron Spectroscopy and Related Phenomena, 1995, 71, 61-71.	0.8	319
6	Gold Glyconanoparticles: Synthetic Polyvalent Ligands Mimicking Glycocalyx-Like Surfaces as Tools for Glycobiological Studies. Chemistry - A European Journal, 2003, 9, 1909-1921.	1.7	241
7	MgH with NbO as additive, for hydrogen storage: Chemical, structural and kinetic behavior with heating. Acta Materialia, 2006, 54, 105-110.	3.8	240
8	Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition. The Journal of Physical Chemistry, 1995, 99, 1484-1490.	2.9	209
9	Formation of Î ³ -Fe2O3Isolated Nanoparticles in a Silica Matrix. Langmuir, 1997, 13, 3627-3634.	1.6	189
10	Improvement in H-sorption kinetics of MgH powders by using Fe nanoparticles generated by reactive FeF addition. Scripta Materialia, 2005, 52, 719-724.	2.6	174
11	Ferromagnetism in fcc Twinned 2.4Ânm Size Pd Nanoparticles. Physical Review Letters, 2003, 91, 237203.	2.9	172
12	Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. TrAC - Trends in Analytical Chemistry, 2012, 32, 40-59.	5.8	167
13	Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coatings. Thin Solid Films, 2009, 517, 1662-1671.	0.8	152
14	Bonding structure in amorphous carbon nitride: A spectroscopic and nuclear magnetic resonance study. Journal of Applied Physics, 2001, 90, 675-681.	1.1	131
15	Hydrogen sorption improvement of nanocrystalline MgH2 by Nb2O5 nanoparticles. Scripta Materialia, 2006, 54, 1293-1297.	2.6	129
16	Chemical and microstructural study of the oxygen passivation behaviour of nanocrystalline Mg and MgH2. Applied Surface Science, 2006, 252, 2334-2345.	3.1	128
17	Nb2O5 "Pathway Effect―on Hydrogen Sorption in Mg. Journal of Physical Chemistry B, 2006, 110, 7845-7850.	1.2	111
18	Spectroscopic characterization of Tio2/SiO2 catalysts. Journal of Catalysis, 1988, 112, 489-494.	3.1	109

#	Article	IF	CITATIONS
19	Encapsulation of Nickel Nanoparticles in Carbon Obtained by the Sonochemical Decomposition of Ni(C8H12)2. Chemistry of Materials, 1999, 11, 1331-1335.	3.2	109
20	Surface plasmon resonance of capped Au nanoparticles. Physical Review B, 2005, 72, .	1.1	106
21	Tribological behaviour of titanium carbide/amorphous carbon nanocomposite coatings: From macro to the micro-scale. Surface and Coatings Technology, 2008, 202, 4011-4018.	2.2	99
22	An XPS study of dispersion and chemical state of MoO3 on Al2O3-TiO2 binary oxide support. Applied Catalysis A: General, 2001, 213, 279-288.	2.2	97
23	Characterization of V2O5/TiO2â^'ZrO2Catalysts by XPS and Other Techniques. Journal of Physical Chemistry B, 1998, 102, 10176-10182.	1.2	96
24	Magnetron sputtering of Cr(Al)N coatings: Mechanical and tribological study. Surface and Coatings Technology, 2005, 200, 192-197.	2.2	90
25	Evidence of spin disorder at the surface–core interface of oxygen passivated Fe nanoparticles. Journal of Applied Physics, 1998, 84, 2189-2192.	1.1	86
26	XPS study of the surface carbonation/hydroxylation state of metal oxides. Applied Surface Science, 1990, 45, 103-108.	3.1	83
27	Supported Co catalysts prepared as thin films by magnetron sputtering for sodium borohydride and ammonia borane hydrolysis. Applied Catalysis B: Environmental, 2014, 158-159, 400-409.	10.8	82
28	Structure and tribological properties of MoCN-Ag coatings in the temperature range of 25–700 °C. Applied Surface Science, 2013, 273, 408-414.	3.1	80
29	Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations. Environmental Pollution, 2013, 174, 134-141.	3.7	79
30	Boron Compounds as Stabilizers of a Complex Microstructure in a Coâ€Bâ€based Catalyst for NaBH ₄ Hydrolysis. ChemCatChem, 2011, 3, 1305-1313.	1.8	78
31	Metal carbide/amorphous C-based nanocomposite coatings for tribological applications. Surface and Coatings Technology, 2009, 204, 947-954.	2.2	74
32	Interpretation of the Binding Energy and Auger Parameter Shifts Found by XPS for TiO2Supported on Different Surfaces. The Journal of Physical Chemistry, 1996, 100, 16255-16262.	2.9	72
33	Giant magnetic anisotropy at the nanoscale: Overcoming the superparamagnetic limit. Physical Review B, 2006, 74, .	1.1	71
34	Comparative investigation of TiAlC(N), TiCrAlC(N), and CrAlC(N) coatings deposited by sputtering of ĐœĐĐ¥-phase Ti2â^Cr AlC targets. Surface and Coatings Technology, 2009, 203, 3595-3609.	2.2	71
35	Microstructural study of the LiBH4–MgH2 reactive hydride composite with and without Ti-isopropoxide additive. Acta Materialia, 2010, 58, 5683-5694.	3.8	71
36	Endurance of TiAlSiN coatings: Effect of Si and bias on wear and adhesion. Wear, 2011, 270, 541-549.	1.5	71

#	Article	IF	CITATIONS
37	Oxidation and diffusion processes in nickel-titanium oxide systems. Surface Science, 1993, 295, 402-410.	0.8	70
38	Chemical changes induced by sputtering in TiO2 and some selected titanates as observed by X-ray absorption spectroscopy. Surface Science, 1993, 290, 427-435.	0.8	68
39	Gold Nanoparticles with Different Capping Systems:Â An Electronic and Structural XAS Analysis. Journal of Physical Chemistry B, 2005, 109, 8761-8766.	1.2	68
40	Oxidation State and Local Structure of Ti-Based Additives in the Reactive Hydride Composite 2LiBH ₄ + MgH ₂ . Journal of Physical Chemistry C, 2010, 114, 3309-3317.	1.5	66
41	Surface Characterization of Ga2O3â^'TiO2 and V2O5/Ga2O3â^'TiO2 Catalysts. Journal of Physical Chemistry B, 2001, 105, 6227-6235.	1.2	65
42	Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications. Applied Catalysis B: Environmental, 2016, 180, 336-343.	10.8	64
43	Mechanical behavior and oxidation resistance of Cr(Al)N coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 681-686.	0.9	63
44	Structural Characterization and Oxidative Dehydrogenation Activity of V2O5/CexZr1-xO2/SiO2Catalysts. Journal of Physical Chemistry B, 2006, 110, 9140-9147.	1.2	63
45	Magnetic and microstructural analysis of palladium nanoparticles with different capping systems. Physical Review B, 2006, 73, .	1.1	63
46	Surface-modified Pd and Au nanoparticles for anti-wear applications. Tribology International, 2011, 44, 720-726.	3.0	61
47	The electronic structure of mesoscopic NiO particles. Chemical Physics Letters, 1993, 208, 460-464.	1.2	60
48	Electronic structure of stoichiometric andAr+-bombardedZrO2determined by resonant photoemission. Physical Review B, 1995, 52, 11711-11720.	1.1	60
49	In Situ EXAFS Study of the Photocatalytic Reduction and Deposition of Gold on Colloidal Titania. The Journal of Physical Chemistry, 1995, 99, 3303-3309.	2.9	59
50	Morphological effects on the photocatalytic properties of SnO2 nanostructures. Journal of Alloys and Compounds, 2019, 810, 151718.	2.8	57
51	Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. II. Preparation and characterization of AlxTiyOz thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2842-2848.	0.9	56
52	Surface plasmon resonance and magnetism of thiol-capped gold nanoparticles. Nanotechnology, 2008, 19, 175701.	1.3	55
53	Surface Stabilized Nanosized CexZr1-xO2Solid Solutions over SiO2: Characterization by XRD, Raman, and HREM Techniquesâ€. Journal of Physical Chemistry B, 2005, 109, 13545-13552.	1.2	53
54	Electronic Semiconductor-Support Interaction—A Novel Effect in Semiconductor Photocatalysis. Angewandte Chemie - International Edition, 2001, 40, 3825-3827.	7.2	51

#	Article	IF	CITATIONS
55	Surface-modified Pd nanoparticles as a superior additive for lubrication. Journal of Nanoparticle Research, 2007, 9, 639-645.	0.8	51
56	Dependence of exchange anisotropy and coercivity on the Fe–oxide structure in oxygen-passivated Fe nanoparticles. Journal of Applied Physics, 1999, 85, 6118-6120.	1.1	50
57	Doping and Alloying Effects on DLC Coatings. , 2008, , 311-338.		50
58	Interface effects for metal oxide thin films deposited on another metal oxide I. SnO deposited on SiO2. Surface Science, 1996, 350, 123-135.	0.8	49
59	Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy. Nanoscale, 2013, 5, 5765.	2.8	49
60	Towards Extending Solar Cell Lifetimes: Addition of a Fluorous Cation to Triple Cationâ€Based Perovskite Films. ChemSusChem, 2017, 10, 3846-3853.	3.6	49
61	Gold Glyconanoparticles as Building Blocks for Nanomaterials Design. Advanced Materials, 2002, 14, 585.	11.1	48
62	Gold and Goldâ^'Iron Oxide Magnetic Glyconanoparticles:Â Synthesis, Characterization and Magnetic Properties Journal of Physical Chemistry B, 2006, 110, 13021-13028.	1.2	47
63	An XPS study of the mixing effects induced by ion bombardment in composite oxides. Applied Surface Science, 1993, 68, 453-459.	3.1	46
64	Oxidation State and Size Effects in CoO Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 6676-6679.	1.2	46
65	Structural and microtribological studies of Ti–C–N based nanocomposite coatings prepared by reactive sputtering. Thin Solid Films, 2005, 472, 64-70.	0.8	45
66	Bifunctional, Monodisperse BiPO4-Based Nanostars: Photocatalytic Activity and Luminescent Applications. Crystal Growth and Design, 2014, 14, 3319-3326.	1.4	45
67	Hydrogen production through sodium borohydride ethanolysis. International Journal of Hydrogen Energy, 2015, 40, 5326-5332.	3.8	45
68	Spectroscopic characterisation and photochemical behaviour of a titanium hydroxyperoxo compound. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 1279.	1.0	44
69	Titania-supported bimetallic catalyst synthesis by photocatalytic codeposition at ambient temperature: Preparation and characterization of Pt\$z.sbnd;Rh, Ag\$z.sbnd;Rh, and Pt\$z.sbnd;Pd couples. Journal of Catalysis, 1991, 132, 490-497.	3.1	44
70	Passivation of nanocrystalline Al prepared by the gas phase condensation method: An x-ray photoelectron spectroscopy study. Journal of Materials Research, 1998, 13, 703-710.	1.2	43
71	Size and support effects in the photoelectron spectra of small TiO2 particles. Surface and Interface Analysis, 1992, 18, 392-396.	0.8	42
72	XPS and ISS study of NiTiO3and PbTiO3subjected to low-energy ion bombardment. I. Influence of the type of ion (Ar+and O 2+). Surface and Interface Analysis, 1993, 20, 941-948.	0.8	42

#	Article	IF	CITATIONS
73	SnO2 thin films prepared by ion beam induced CVD: preparation and characterization by X-ray absorption spectroscopy. Thin Solid Films, 1999, 353, 113-123.	0.8	42
74	Ion beam induced chemical vapor deposition for the preparation of thin film oxides. Thin Solid Films, 1994, 241, 198-201.	0.8	41
75	Characterization of carbon nitride thin films prepared by dual ion beam sputtering. Applied Physics Letters, 1996, 69, 764-766.	1.5	41
76	Characterization of MoO3/TiO2–ZrO2 catalysts by XPS and other techniques. Journal of Molecular Catalysis A, 2000, 162, 431-441.	4.8	41
77	The melting behavior of passivated nanocrystalline aluminum. Scripta Materialia, 1996, 7, 813-822.	0.5	40
78	TEM, EELS and EFTEM characterization of nickel nanoparticles encapsulated in carbon. Journal of Materials Chemistry, 2000, 10, 715-721.	6.7	40
79	New insights into the synergistic effect in bimetallic-boron catalysts for hydrogen generation: The Co–Ru–B system as a case study. Applied Catalysis B: Environmental, 2012, 128, 39-47.	10.8	40
80	Study of the thermal stability of carbon nitride thin films prepared by reactive magnetron sputtering. Diamond and Related Materials, 2000, 9, 212-218.	1.8	39
81	Comparative investigation of Al- and Cr-doped TiSiCN coatings. Surface and Coatings Technology, 2011, 205, 4640-4648.	2.2	39
82	On the formation of the porous structure in nanostructured a-Si coatings deposited by dc magnetron sputtering at oblique angles. Nanotechnology, 2014, 25, 355705.	1.3	39
83	Structural characterization of partially amorphous SnO2 nanoparticles by factor analysis of XAS and FT-IR spectra. Solid State Ionics, 1999, 116, 117-127.	1.3	38
84	Electronic structure, magnetic properties, and microstructural analysis of thiol-functionalized Au nanoparticles: role of chemical and structural parameters in the ferromagnetic behaviour. Journal of Nanoparticle Research, 2008, 10, 179-192.	0.8	38
85	Deactivation, reactivation and memory effect on Co–B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen Energy, 2012, 37, 14373-14381.	3.8	38
86	Structural Characterization of CeO2â^'ZrO2/TiO2and V2O5/CeO2â^'ZrO2/TiO2Mixed Oxide Catalysts by XRD, Raman Spectroscopy, HREM, and Other Techniques. Journal of Physical Chemistry B, 2005, 109, 1781-1787.	1.2	37
87	Self-lubricating Ti–C–N nanocomposite coatings prepared by double magnetron sputtering. Solid State Sciences, 2009, 11, 660-670.	1.5	37
88	The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis. Applied Catalysis B: Environmental, 2017, 210, 342-351.	10.8	37
89	In Situ Energy-Dispersive XAS and XRD Study of the Superior Hydrogen Storage System MgH2/Nb2O5. Journal of Physical Chemistry C, 2007, 111, 10700-10706.	1.5	35
90	Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. I. Preparation and characterization of TiO2 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2728-2732.	0.9	34

#	Article	IF	CITATIONS
91	Synthesis of SnO and SnO2 nanocrystalline powders by the gas phase condensation method. Sensors and Actuators B: Chemical, 1996, 31, 29-32.	4.0	34
92	Adsorption and oxidation of K deposited on graphite. Surface Science, 1996, 364, 253-265.	0.8	33
93	Tailored synthesis of TiCâ^•a-C nanocomposite tribological coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1732-1736.	0.9	33
94	X-ray Photoelectron Spectroscopy Study of V2O5Dispersion on a Nanosized Al2O3-TiO2Mixed Oxide. Langmuir, 2001, 17, 1132-1137.	1.6	32
95	Catalytic growth of carbon nanotubes on stainless steel: Characterization and frictional properties. Diamond and Related Materials, 2008, 17, 1853-1857.	1.8	31
96	Mechanism of hydrogen gas-sensing at low temperatures using Rh/TiO2 systems. Sensors and Actuators, 1989, 18, 337-348.	1.8	30
97	Preparation, microstructural characterisation and tribological behaviour of CN coatings. Surface and Coatings Technology, 2003, 163-164, 527-534.	2.2	30
98	Synchrotron Photoemission Characterization of TiO2Supported on SiO2. Langmuir, 1998, 14, 4908-4914.	1.6	29
99	The preparation of metal–polymer composite materials using ultrasound radiation: Part II. Differences in physical properties of cobalt–polymer and iron–polymer composites. Journal of Materials Research, 1999, 14, 3913-3920.	1.2	29
100	STEM–EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering. Nanotechnology, 2015, 26, 075703.	1.3	29
101	Structural aspects of the interaction of methyl thiol and dimethyldisulphide with Ni(111). Journal of Physics Condensed Matter, 1995, 7, 7781-7796.	0.7	28
102	Chemical Analysis of Ternary Ti Oxides using Soft X-ray Absorption Spectroscopy. Surface and Interface Analysis, 1997, 25, 804-808.	0.8	28
103	Synthesis of nanocrystalline MgH2 powder by gas-phase condensation and in situ hydridation: TEM, XPS and XRD study. Journal of Alloys and Compounds, 2007, 434-435, 721-724.	2.8	28
104	A comparative study of the role of additive in the MgH2 vs. the LiBH4–MgH2 hydrogen storage system. International Journal of Hydrogen Energy, 2011, 36, 3932-3940.	3.8	28
105	A new bottom-up methodology to produce silicon layers with a closed porosity nanostructure and reduced refractive index. Nanotechnology, 2013, 24, 275604.	1.3	28
106	Pt-impregnated catalysts on powdery SiC and other commercial supports for the combustion of hydrogen under oxidant conditions. Applied Catalysis B: Environmental, 2017, 201, 391-399.	10.8	28
107	Nanoporous Pt-based catalysts prepared by chemical dealloying of magnetron-sputtered Pt-Cu thin films for the catalytic combustion of hydrogen. Applied Catalysis B: Environmental, 2018, 235, 168-176.	10.8	28
108	Ion-Beam-Induced CVD: An Alternative Method of Thin Film Preparation. Chemical Vapor Deposition, 1997, 3, 219-226.	1.4	27

#	Article	IF	CITATIONS
109	Characterisation of passivated aluminium nanopowders: An XPS and TEM/EELS study. Journal of the European Ceramic Society, 1998, 18, 1195-1200.	2.8	27
110	Tribochemical effects on CNx films. Surface and Coatings Technology, 2000, 133-134, 430-436.	2.2	27
111	Bonding and morphology study of carbon nitride films obtained by dual ion beam sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 515-523.	0.9	26
112	Characterisation and magnetic behaviour of nickel nanoparticles encapsulated in carbon. Acta Materialia, 2004, 52, 2165-2171.	3.8	26
113	Characterization of nanostructured Ti–B–(N) coatings produced by direct current magnetron sputtering. Thin Solid Films, 2007, 515, 3590-3596.	0.8	26
114	Photophysikalische und photochemische Eigenschaften von Metalldithiolenen. Chemische Berichte, 1984, 117, 3102-3111.	0.2	25
115	Mixing effects in CeO2/TiO2 and CeO2/SiO2 systems submitted to Ar+ sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 58-65.	0.9	25
116	Thermal and photochemical methods for the preparation of thin films of cermet materials. Journal of Materials Science, 1996, 31, 2325-2332.	1.7	25
117	The role of CN chemical bonding on the tribological behaviour of CNx coatings. Surface and Coatings Technology, 1999, 120-121, 594-600.	2.2	25
118	The use of X-ray photoelectron spectroscopy to characterize fine AlN powders submitted to mechanical attrition. Scripta Materialia, 1999, 11, 249-257.	0.5	25
119	Tribological behaviour and chemical characterisation of Si-free and Si-containing carbon nitride coatings. Diamond and Related Materials, 2002, 11, 169-175.	1.8	25
120	Combined x-ray photoelectron spectroscopy and scanning electron microscopy studies of the LiBH4–MgH2 reactive hydride composite with and without a Ti-based additive. Journal of Applied Physics, 2011, 109, .	1.1	25
121	Characterization of oxygen passivated iron nanoparticles and thermal evolution to γ-Fe2O3. Journal of Materials Science, 2004, 39, 4877-4885.	1.7	24
122	Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60W-scale fuel cell stack. Journal of Power Sources, 2011, 196, 4388-4395.	4.0	24
123	STEM-in-SEM high resolution imaging of gold nanoparticles and bivalve tissues in bioaccumulation experiments. Analyst, The, 2015, 140, 3082-3089.	1.7	24
124	Tailor-made preparation of Co–C, Co–B, and Co catalytic thin films using magnetron sputtering: insights into structure–composition and activation effects for catalyzed NaBH ₄ hydrolysis. RSC Advances, 2016, 6, 108611-108620.	1.7	24
125	The growth of thin Ti and TiOx films on Pt(111): Morphology and oxidation states. Surface Science, 1992, 273, 31-39.	0.8	23
126	The gas-phase condensation method for the preparation of quantum-sized ZnS nanoparticles. Thin Solid Films, 1998, 317, 497-499.	0.8	23

#	Article	IF	CITATIONS
127	Resonant photoemission characterization of SnO. Physical Review B, 1999, 60, 11171-11179.	1.1	23
128	Evolution of the microstructure, chemical composition and magnetic behaviour during the synthesis of alkanethiol-capped gold nanoparticles. Acta Materialia, 2007, 55, 1723-1730.	3.8	23
129	Comparative performance of nanocomposite coatings of TiC or TiN dispersed in a-C matrixes. Surface and Coatings Technology, 2008, 203, 756-760.	2.2	23
130	SiOxNy thin films with variable refraction index: Microstructural, chemical and mechanical properties. Applied Surface Science, 2010, 256, 4548-4553.	3.1	23
131	A resonant photoemission study of the ZrO2 valence band. Surface Science, 1994, 307-309, 848-853.	0.8	22
132	Contribution of the xâ€ray absorption spectroscopy to study TiO2thin films prepared by ion beam induced chemical vapor deposition. Journal of Applied Physics, 1995, 77, 591-597.	1.1	22
133	Substrate Effects and Chemical State Plots for the XPS Analysis of Supported TiO2 Catalysts. Surface and Interface Analysis, 1997, 25, 292-294.	0.8	22
134	Preparation, characterization and thermal evolution of oxygen passivated nanocrystalline cobalt. Journal of Materials Chemistry, 1999, 9, 1011-1017.	6.7	22
135	Room temperature permanent magnetism in thiol-capped Pd-rich nanoparticles. Nanotechnology, 2006, 17, 1449-1453.	1.3	22
136	Characterization of Tilâ^'xAlxN coatings with selective IR reflectivity. Solar Energy, 2010, 84, 1397-1401.	2.9	22
137	Depth profiling of catalyst samples: An XPS-based model for the sputtering behavior of powder materials. Journal of Catalysis, 1991, 130, 627-641.	3.1	21
138	Charging and mixing effects during the XPS analysis of mixtures of oxides. Surface and Interface Analysis, 1994, 22, 111-114.	0.8	21
139	Electronic structure of insulatingZr3N4studied by resonant photoemission. Physical Review B, 1995, 51, 17984-17987.	1.1	21
140	Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1307-1318.	0.8	21
141	Role of hydrogen in the mobility of phases in Ni\$z.sbnd;TiOx systems. Journal of Catalysis, 1991, 131, 51-59.	3.1	20
142	Photoelectron spectroscopy of metal oxide particles: size and support effects. Vacuum, 1994, 45, 1085-1086.	1.6	20
143	Oxygen gas sensing behavior of nanocrystalline tin oxide prepared by the gas phase condensation method. Scripta Materialia, 1997, 8, 675-686.	0.5	20
144	Transmission Electron Microscopy and Energy-Dispersive X-ray Spectroscopy Study of V2O5/TiO2â^ZrO2Catalyst. Langmuir, 2000, 16, 4217-4221.	1.6	20

#	Article	IF	CITATIONS
145	Depth profiling of industrial surface treatments by rf and dc glow discharge spectrometry. Applied Surface Science, 2004, 235, 97-102.	3.1	20
146	Study of Cobalt-Filled Carbon Nanoflasks. Journal of Physical Chemistry B, 2001, 105, 7606-7611.	1.2	19
147	Successive ion implantation of high doses of carbon and nitrogen on steels. Surface and Coatings Technology, 2002, 158-159, 630-635.	2.2	19
148	Tribological carbon-based coatings: An AFM and LFM study. Surface Science, 2009, 603, 973-979.	0.8	19
149	Exploring the benefits of depositing hard TiN thin films by non-reactive magnetron sputtering. Applied Surface Science, 2013, 275, 121-126.	3.1	19
150	Structural characterization of PbTiO3 thin films prepared by ion beam induced CVD and evaporation of lead. Thin Solid Films, 1996, 272, 99-106.	0.8	17
151	Preparation of Al2O3 thin films by ion-beam-induced CVD: structural effects of the bombardment with accelerated ions. Surface and Coatings Technology, 1996, 80, 23-26.	2.2	17
152	Influence of particle size on electrochemical and gas-phase hydrogen storage in nanocrystalline Mg. Journal of Alloys and Compounds, 2008, 463, 539-545.	2.8	17
153	Electronic interaction of Ni particles with TiO2 and SiO2. Surface Science, 1991, 251-252, 1012-1017.	0.8	16
154	"In situ―XPS study of the photoassisted reduction of noble-metal cations on TiO2. Applied Surface Science, 1993, 69, 285-289.	3.1	16
155	Use of XAS and chemical probes to study the structural damage induced in oxide ceramics by bombardment with low-energy ions. Surface and Interface Analysis, 1994, 21, 418-424.	0.8	16
156	Interface effects and the Auger parameter in titanium oxide thin films deposited on metals and in sandwich structures. Journal of Electron Spectroscopy and Related Phenomena, 1997, 87, 61-71.	0.8	16
157	Application of the gas phase condensation to the preparation of nanoparticles. Vacuum, 1999, 52, 83-88.	1.6	16
158	TEM study of fractal scaling in nanoparticle agglomerates obtained by gas-phase condensation. Acta Materialia, 2000, 48, 3761-3771.	3.8	16
159	Characterization of Nanocomposite Coatings in the System Ti-B-N by Analytical Electron Microscopy and X-Ray Photoelectron Spectroscopy. Monatshefte Für Chemie, 2002, 133, 837-848.	0.9	16
160	Magnetron sputtered a-SiOxNy thin films: A closed porous nanostructure with controlled optical and mechanical properties. Microporous and Mesoporous Materials, 2012, 149, 142-146.	2.2	16
161	Use of XPS and Ar+depth profiling to determine the dispersion degree of Ni in Ni/TiO2and Ni/SiO2catalysts. Surface and Interface Analysis, 1992, 19, 508-512.	0.8	15
162	Preparation of TiO2 and Al2O3 thin films by ion-beam induced chemical vapour deposition. Vacuum, 1994, 45, 1043-1045.	1.6	15

#	Article	IF	CITATIONS
163	Mechanical properties of nanocrystalline Ti–B–(N) coatings produced by DC magnetron sputtering. Surface and Coatings Technology, 2005, 200, 734-738.	2.2	15
164	Surface nickel particles generated by exsolution from a perovskite structure. Journal of Solid State Chemistry, 2019, 273, 75-80.	1.4	15
165	TiO2corrosion during water photocleavage using Rh/TiO2suspensions. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3441-3445.	1.7	14
166	Generation of homogeneous rhodium particles by photoreduction of rhodium(III) on titania colloids grafted on silica. Langmuir, 1993, 9, 121-125.	1.6	14
167	XAS and XRD structural studies of titanium oxide thin films prepared by ion beam induced CVD. Thin Solid Films, 1994, 241, 175-178.	0.8	14
168	Thermal annealing of defects in highly defective NiO nanoparticles studied by X-ray and electron spectroscopies. Chemical Physics Letters, 1997, 266, 184-188.	1.2	14
169	AlN thin films prepared by ion beam induced chemical vapour deposition. Thin Solid Films, 1998, 317, 100-104.	0.8	14
170	A nanoscale approach for the characterization of amorphous carbon-based lubricant coatings. Surface and Coatings Technology, 2005, 200, 40-45.	2.2	14
171	MAGNETIC PROPERTIES OF ORGANIC COATED GOLD SURFACES. Modern Physics Letters B, 2007, 21, 303-319.	1.0	14
172	Influence of Nanocrystallization in the Electrochemical Behaviour of Fe _(73.5-X) Cu ₁ Nb ₃ Si _{13.5Finemet Type Alloy. Materials Science Forum, 1998, 289-292, 1047-1056.}	ub>B&	lt; دین b>9&l
173	Tribological and chemical characterization of ion beam-deposited CNx films. Vacuum, 1999, 52, 199-202.	1.6	13
174	Fabrication of Optical Multilayer Devices from Porous Silicon Coatings with Closed Porosity by Magnetron Sputtering. ACS Applied Materials & amp; Interfaces, 2015, 7, 13889-13897.	4.0	13
175	The nanostructure of porous cobalt coatings deposited by magnetron sputtering in helium atmosphere. Micron, 2018, 108, 49-54.	1.1	13
176	Permanent Magnetism in Thiol Capped Nanoparticles Gold and ZnO. Acta Physica Polonica A, 2008, 113, 515-520.	0.2	13
177	The Role of the Oxygen Vacancies at the Support in the Co Oxidation On Rh/Ceo2 AND Rh/TiO2 AUTOCATALYSTS Studies in Surface Science and Catalysis, 1991, 71, 207-219.	1.5	12
178	Type B Semiconductor Photocatalysis: On the Mechanism of the CdS-Catalyzed Linear Photoaddition of 2,5-Dihydrofuran to Azobenzene. Zeitschrift Fur Physikalische Chemie, 1999, 213, 129-133.	1.4	12
179	Mechanosynthesis of carbon nitride compounds. Diamond and Related Materials, 2001, 10, 1995-2001.	1.8	12
180	Thermal Stability and Oxidation Resistance of Nanocomposite TiC/a Protective Coatings. Plasma Processes and Polymers, 2009, 6, S462.	1.6	12

#	Article	IF	CITATIONS
181	Microstructural and Chemical Characterization of Nanostructured TiAlSiN Coatings with Nanoscale Resolution. Microscopy and Microanalysis, 2012, 18, 568-581.	0.2	12
182	Shape-defined nanodimers by tailored heterometallic epitaxy. Nanoscale, 2014, 6, 11090-11097.	2.8	12
183	Characterization and Validation of a-Si Magnetron-Sputtered Thin Films as Solid He Targets with High Stability for Nuclear Reactions. ACS Omega, 2016, 1, 1229-1238.	1.6	12
184	Tailoring materials by high-energy ball milling: TiO2 mixtures for catalyst support application. Materials Today Chemistry, 2020, 17, 100340.	1.7	12
185	Catalytic and stoichiometric hydrogen formation by UV irradiation of sodium and zinc sulfide. Chemische Berichte, 1986, 119, 3473-3482.	0.2	11
186	Photoassisted deposition of rhodium on platinum/titania samples as a method of preparing bimetallic catalysts. Applied Catalysis, 1990, 57, 191-202.	1.1	11
187	Chemical changes in titanate surfaces induced by Ar+ion bombardment. Surface and Interface Analysis, 1992, 19, 286-290.	0.8	11
188	Experimental set-up for in-situ X-ray absorption spectroscopy analysis of photochemical reactions: the photocatalytic reduction of gold on titania. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 78, 169-172.	2.0	11
189	Carbon nitride films synthesized by dual ion beam sputtering. Nuclear Instruments & Methods in Physics Research B, 1997, 122, 534-537.	0.6	11
190	Tailored Preparation of Quantum-Sized ZnS Nanoparticles by the Gas-Phase Condensation Method. Langmuir, 1999, 15, 7822-7828.	1.6	11
191	Microstructural characterization of Ti–TiN/CNx gradient-multilayered coatings. Surface and Coatings Technology, 2004, 180-181, 526-532.	2.2	11
192	Vibrational spectroscopy characterization of magnetron sputtered silicon oxide and silicon oxide of silicon oxynitride films. Applied Surface Science, 2009, 256, 156-164.	3.1	11
193	Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles. Journal of Applied Physics, 2010, 107, 064303.	1.1	11
194	Low-temperature photoassisted generation of a strong metal-support interaction in a rhodium/titania catalyst. The Journal of Physical Chemistry, 1993, 97, 3350-3354.	2.9	10
195	Barium and titanium aryl oxides as precursors for the preparation of thin-film oxides. The effect of bombardment by O2+. Journal of the Chemical Society Dalton Transactions, 1995, , 1529-1536.	1.1	10
196	preparation and characterization of CdS and ZnS nanosized particles obtained by the inert gas evaporation method. Scripta Materialia, 1999, 12, 459-462.	0.5	10
197	Influence of the Capping Molecule on the Magnetic Behavior of Thiol-Capped Gold Nanoparticles. IEEE Transactions on Magnetics, 2008, 44, 2768-2771.	1.2	10
198	Impregnation of carbon black for the examination of colloids using TEM. Carbon, 2014, 76, 464-468.	5.4	10

#	Article	IF	CITATIONS
199	Island-type growth of Au–Pt heterodimers: direct visualization of misfit dislocations and strain-relief mechanisms. RSC Advances, 2015, 5, 55262-55268.	1.7	10
200	Nitrogen Nanobubbles in a-SiO _{<i>x</i>} N _{<i>y</i>} Coatings: Evaluation of Its Physical Properties and Chemical Bonding State by Spatially Resolved Electron Energy-Loss Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 5651-5658.	1.5	10
201	Determination of the Anisotropic Elastic Properties of Rocksalt Ge ₂ Sb ₂ Te ₅ by XRD, Residual Stress, and DFT. Journal of Physical Chemistry C, 2016, 120, 5624-5629.	1.5	10
202	Exchange bias and two steps magnetization reversal in porous Co/CoO layer. Materials and Design, 2019, 171, 107691.	3.3	10
203	Calibration of the Probing Depth by Total Electron Yield of EXAFS Spectra in Oxide Overlayers (Ta2O5,) Tj ETQq1	1 8:88431	4 _d gBT /Ove
204	Tribological and mechanical properties of CNx- and SiCNx-TiN/Ti multilayered systems grown onto steel. Vacuum, 2002, 67, 551-558.	1.6	9
205	Structural modifications of silicon-doped carbon nitride films during post-deposition annealing. Diamond and Related Materials, 2003, 12, 1055-1060.	1.8	9
206	Simultaneous quantification of light elements in thin films deposited on Si substrates using proton EBS (Elastic Backscattering Spectroscopy). Nuclear Instruments & Methods in Physics Research B, 2014, 332, 449-453.	0.6	9
207	Full solution processed mesostructured optical resonators integrating colloidal semiconductor quantum dots. Nanoscale, 2015, 7, 16583-16589.	2.8	9
208	Study of the Mechanism of Water Splitting on UV-Irradiated Rh/TiO2. Studies in Surface Science and Catalysis, 1984, , 335-346.	1.5	8
209	Surface modification of oxide materials subjected to low energy ion bombardment: a XAS study. Nuclear Instruments & Methods in Physics Research B, 1995, 97, 397-401.	0.6	8
210	Characterisation of carbon nitride thin films prepared by reactive magnetron sputtering. Carbon, 1998, 36, 761-764.	5.4	8
211	Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine): Structure and electron irradiation effects. Micron, 2014, 67, 1-9.	1.1	8
212	Monolithic supports based on biomorphic SiC for the catalytic combustion of hydrogen. RSC Advances, 2016, 6, 66373-66384.	1.7	8
213	Palladium nanoparticles obtained by mechanical milling. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1201-1205.	0.8	7
214	Tomographic Heating Holder for <i>In Situ</i> TEM: Study of Pt/C and PtPd/Al ₂ O ₃ Catalysts as a Function of Temperature. Microscopy and Microanalysis, 2014, 20, 982-990.	0.2	7
215	Advances in the implementation of PVD-based techniques for the preparation of metal catalysts for the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 2020, 45, 33288-33309.	3.8	7
216	Chemical effects in TiO2 and titanates due to bombardment with Ar+ and O 2 + ions of different energies (3.5-10 keV). Applied Physics A: Materials Science and Processing, 1996, 63, 237-242.	1.1	6

#	Article	IF	CITATIONS
217	Preparation and thermal evolution of vapour-condensed nanocrystalline iron. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 663-667.	0.6	6
218	Photoelectron spectroscopy versus absorption spectroscopy for quantitative characterization of nanometric powders coated with an overlayer. Surface and Interface Analysis, 1998, 26, 1016-1026.	0.8	6
219	Public concern over ecotoxicology risks from nanomaterials: Pressing need for research-based information. Environment International, 2012, 39, 148-149.	4.8	6
220	A Nanoscale Characterization with Electron Microscopy of Multilayered CrAlYN Coatings: A Singular Functional Nanostructure. Microscopy and Microanalysis, 2014, 20, 14-24.	0.2	6
221	Strong activation effect on a Ru-Co-C thin film catalyst for the hydrolysis of sodium borohydride. Scientific Reports, 2018, 8, 9755.	1.6	6
222	Ion beam fusion plasma. Ablation and heating regimes. Plasma Physics and Controlled Fusion, 1986, 28, 989-1007.	0.9	5
223	"In situ―XPS study of the oxygen passivation process in vapour-condensed nanocrystalline iron and cobalt. Scripta Materialia, 2001, 44, 2331-2334.	2.6	5
224	Microstructural characterization of hydrophobic Ti1â´'xAlxN coatings with moth-eye-like surface morphology. Journal of Alloys and Compounds, 2012, 536, S398-S406.	2.8	5
225	Microemulsion Assisted Sol-Gel Method as Approach to Load a Model Anticancer Drug inside Silica Nanoparticles for Controlled Release Applications. Colloids and Interface Science Communications, 2018, 24, 13-17.	2.0	5
226	Morphologically diverse CaCO3 microparticles and their incorporation into recycled cellulose for circular economy. Materials Today Sustainability, 2022, 19, 100166.	1.9	5
227	The use of EXAFS spectroscopy to show the structural modifications in metals implanted with N+ ions. Surface and Coatings Technology, 1996, 83, 109-114.	2.2	4
228	The Role of Oxide Passivation Layers in Nanocrystalline Metal Powders and Consolidated Materials. Materials Science Forum, 1998, 269-272, 827-832.	0.3	4
229	Preparation and characterization of cobalt oxide nanosized particles obtained by an electrochemical method. Scripta Materialia, 1999, 12, 61-64.	0.5	4
230	Characterization of mixed Ti/Al oxide thin films prepared by ion-beam-induced CVD. Applied Surface Science, 2000, 161, 209-218.	3.1	4
231	Low gas consumption fabrication of 3He solid targets for nuclear reactions. Materials and Design, 2020, 186, 108337.	3.3	4
232	Pd-C Catalytic Thin Films Prepared by Magnetron Sputtering for the Decomposition of Formic Acid. Nanomaterials, 2021, 11, 2326.	1.9	4
233	Self-similar expansions in ion beam fusion. Plasma Physics and Controlled Fusion, 1987, 29, 1605-1613.	0.9	3
234	Quantitative chemical depth profiles of ZrN/BN multilayers. Surface and Interface Analysis, 1998, 26, 806-814.	0.8	3

#	Article	IF	CITATIONS
235	Microstructural and Chemical Characterisation of Metal Particles Nanostructures. Materials Transactions, 2003, 44, 2055-2061.	0.4	3
236	Characterization of Magnetic Nanoparticles Using Energy-Selected Transmission Electron Microscopy. Microscopy and Microanalysis, 2002, 8, 403-411.	0.2	2
237	Vibrational polaritons in thin oxide and nitride films. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2460-2463.	0.8	2
238	Microstructural and chemical characterisation techniques for nanostructured and amorphous coatings. EPJ Applied Physics, 2008, 43, 333-341.	0.3	2
239	Nanoscale mechanically induced structural and electrical changes in Ge2Sb2Te5 films. Journal of Applied Physics, 2012, 111, .	1.1	2
240	Chemistry, nanostructure and magnetic properties of Co–Ru–B–O nanoalloys. RSC Advances, 2014, 4, 46576-46586.	1.7	2
241	Novel solid \$\$^4\$\$He targets for experimental studies on nuclear reactions: \$\$^6\$\$Li + \$\$^4\$\$He differential cross-section measurement at incident energy of 5.5 MeV. European Physical Journal Plus, 2020, 135, 1.	1.2	2
242	Influence of helium incorporation on growth process and properties of aluminum thin films deposited by DC magnetron sputtering. Surface and Coatings Technology, 2021, 426, 127808.	2.2	2
243	XPS study of irradiated polycrystalline TiO2. Surface and Interface Analysis, 1986, 9, 248-248.	0.8	1
244	Depth Profiling and Compositional Study of Implanted Surface Layers and Nitride Multilayers by a Combined GDOES, NRA and RBS Analysis. Plasma Processes and Polymers, 2007, 4, S851-S856.	1.6	1
245	Ciencia y TecnologÃa de Materiales: de las sombras a las luces. Arbor, 2002, 172, 605-640.	0.1	0
246	Synthesis and size evolution of 1D hydroxyapatite crystals under surfactant-free hydrothermal conditions. Journal of Physics: Conference Series, 2019, 1386, 012076.	0.3	0
247	Characterization of Thin Films by X-Ray Absorption Spectroscopy. , 1997, , 307-316.		0
248	Contribution of electron microscopy techniques to the chemical and structural characterization of TiC/a-C nanocomposite coatings. , 2008, , 697-698.		0
249	Synthesis and Characterization of Pd over Novel TiO ₂ Mixtures: Insights on Metal-Support Interactions. , 2020, 2, .		0
250	A hydrogen generator coupled to a hydrogen heater for small scale portable applications. E3S Web of Conferences, 2022, 334, 06006.	0.2	0