List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5978311/publications.pdf Version: 2024-02-01

KADEN REHE

#	Article	IF	CITATIONS
1	Female and male mice have differential longterm cardiorenal outcomes following a matched degree of ischemia–reperfusion acute kidney injury. Scientific Reports, 2022, 12, 643.	1.6	18
2	Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2. Acta Pharmaceutica Sinica B, 2022, 12, 1624-1635.	5.7	12
3	Illuminating the Mechanisms Underlying Sex Differences in Cardiovascular Disease. Circulation Research, 2022, 130, 1747-1762.	2.0	35
4	Genetic regulation of liver lipids in a mouse model of insulin resistance and hepatic steatosis. Molecular Systems Biology, 2021, 17, e9684.	3.2	16
5	Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature, 2021, 590, 480-485.	13.7	102
6	Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacological Reviews, 2021, 73, 730-762.	7.1	80
7	Isolation and functional analysis of peridroplet mitochondria from murine brown adipose tissue. STAR Protocols, 2021, 2, 100243.	0.5	11
8	Transcriptional regulation of N6-methyladenosine orchestrates sex-dimorphic metabolic traits. Nature Metabolism, 2021, 3, 940-953.	5.1	24
9	The middle lipin domain adopts a membrane-binding dimeric protein fold. Nature Communications, 2021, 12, 4718.	5.8	11
10	Lipin 1 modulates mRNA splicing during fasting adaptation in liver. JCI Insight, 2021, 6, .	2.3	7
11	Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nature Metabolism, 2021, 3, 1552-1568.	5.1	32
12	Estrogen receptor α controls metabolism in white and brown adipocytes by regulating <i>Polg1</i> and mitochondrial remodeling. Science Translational Medicine, 2020, 12, .	5.8	64
13	Induction of UCP1 and thermogenesis by a small molecule via AKAP1/PKA modulation. Journal of Biological Chemistry, 2020, 295, 15054-15069.	1.6	9
14	Crystal structure of a lipin/Pah phosphatidic acid phosphatase. Nature Communications, 2020, 11, 1309.	5.8	27
15	lsoquinoline thiosemicarbazone displays potent anticancer activity with in vivo efficacy against aggressive leukemias. RSC Medicinal Chemistry, 2020, 11, 392-410.	1.7	6
16	Deficiency in ZMPSTE24 and resulting farnesyl–prelamin A accumulation only modestly affect mouse adipose tissue stores. Journal of Lipid Research, 2020, 61, 413-421.	2.0	9
17	X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. Journal of Clinical Investigation, 2020, 130, 5688-5702.	3.9	62
18	A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO Journal, 2020, 39, e104073.	3.5	110

#	Article	IF	CITATIONS
19	Sex as a modulator of lipid metabolism and metabolic disease. , 2020, , 45-61.		Ο
20	Sex-specific metabolic functions of adipose Lipocalin-2. Molecular Metabolism, 2019, 30, 30-47.	3.0	41
21	Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits. Cell Metabolism, 2019, 29, 932-949.e4.	7.2	79
22	PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity. Antioxidants, 2019, 8, 19.	2.2	19
23	XX sex chromosome complement promotes atherosclerosis in mice. Nature Communications, 2019, 10, 2631.	5.8	48
24	Stimulation of Hair Growth by Small Molecules that Activate Autophagy. Cell Reports, 2019, 27, 3413-3421.e3.	2.9	83
25	Noggin depletion in adipocytes promotes obesity in mice. Molecular Metabolism, 2019, 25, 50-63.	3.0	14
26	Mammalian lipin phosphatidic acid phosphatases in lipid synthesis and beyond: metabolic and inflammatory disorders. Journal of Lipid Research, 2019, 60, 728-733.	2.0	47
27	Single cell analysis reveals immune cell–adipocyte crosstalk regulating the transcription of thermogenic adipocytes. ELife, 2019, 8, .	2.8	110
28	Sex differences in obesity, lipid metabolism, and inflammation—A role for the sex chromosomes?. Molecular Metabolism, 2018, 15, 35-44.	3.0	145
29	Integration of Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial Dysfunction in Non-alcoholic Fatty Liver Disease. Cell Systems, 2018, 6, 103-115.e7.	2.9	124
30	Diet1, bile acid diarrhea, and FGF15/19: mouse model and human genetic variants. Journal of Lipid Research, 2018, 59, 429-438.	2.0	27
31	A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metabolism, 2018, 27, 1138-1155.e6.	7.2	58
32	NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes. Cell Metabolism, 2018, 27, 1055-1066.e3.	7.2	54
33	IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233.e17.	13.5	142
34	KDM4B protects against obesity and metabolic dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5566-E5575.	3.3	47
35	Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nature Communications, 2018, 9, 1916.	5.8	44
36	Deciphering the Role of Lipid Droplets in Cardiovascular Disease. Circulation, 2018, 138, 305-315.	1.6	89

#	Article	IF	CITATIONS
37	Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis. Journal of Clinical Investigation, 2018, 129, 281-295.	3.9	29
38	Metformin induces distinct bioenergetic and metabolic profiles in sensitive versus resistant high grade serous ovarian cancer and normal fallopian tube secretory epithelial cells. Oncotarget, 2018, 9, 4044-4060.	0.8	15
39	Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics, 2017, 18, 89.	1.2	40
40	Sex Hormones and Sex Chromosomes Cause Sex Differences in the Development of Cardiovascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 746-756.	1.1	224
41	Lipin proteins and glycerolipid metabolism: Roles at the ER membrane and beyond. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1583-1595.	1.4	104
42	How lipid droplets "TAG―along: Glycerolipid synthetic enzymes and lipid storage. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1131-1145.	1.2	79
43	Genetic Basis for Sex Differences in Obesity and Lipid Metabolism. Annual Review of Nutrition, 2017, 37, 225-245.	4.3	191
44	A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism. Cell Metabolism, 2017, 25, 1216-1230.	7.2	179
45	Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia. New England Journal of Medicine, 2017, 376, 1647-1658.	13.9	112
46	Sex differences in obesity: X chromosome dosage as a risk factor for increased food intake, adiposity and co-morbidities. Physiology and Behavior, 2017, 176, 174-182.	1.0	53
47	Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. ELife, 2017, 6, .	2.8	142
48	Prdm4 induction by the small molecule butein promotes white adipose tissue browning. Nature Chemical Biology, 2016, 12, 479-481.	3.9	42
49	Simulated microgravity enhances oligodendrocyte mitochondrial function and lipid metabolism. Journal of Neuroscience Research, 2016, 94, 1434-1450.	1.3	22
50	Adipocyte Browning and Higher Mitochondrial Function in Periadrenal But Not SC Fat in Pheochromocytoma. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4440-4448.	1.8	44
51	Skeletal muscle action of estrogen receptor \hat{I}_{\pm} is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Science Translational Medicine, 2016, 8, 334ra54.	5.8	174
52	The importance of having two X chromosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150113.	1.8	89
53	SREBP-2-deficient and hypomorphic mice reveal roles for SREBP-2 in embryonic development and SREBP-1c expression. Journal of Lipid Research, 2016, 57, 410-421.	2.0	51
54	Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 941-953.	2.4	49

#	Article	IF	CITATIONS
55	Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Molecular Cancer Research, 2016, 14, 78-92.	1.5	49
56	Diet1 Is a Regulator of Fibroblast Growth Factor 15/19-Dependent Bile Acid Synthesis. Digestive Diseases, 2015, 33, 307-313.	0.8	8
57	Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell, 2015, 163, 1716-1729.	13.5	322
58	Increased High-Density Lipoprotein Cholesterol Levels in Mice With XX Versus XY Sex Chromosomes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1778-1786.	1.1	72
59	PON3 knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis. FASEB Journal, 2015, 29, 1185-1197.	0.2	38
60	Sex differences in diurnal rhythms of food intake in mice caused by gonadal hormones and complement of sex chromosomes. Hormones and Behavior, 2015, 75, 55-63.	1.0	55
61	Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis. Antioxidants and Redox Signaling, 2015, 23, 1207-1219.	2.5	39
62	2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metabolism, 2015, 22, 508-515.	7.2	190
63	ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. ELife, 2015, 4, .	2.8	100
64	The Lipin Protein Family, Cellular Lipid Storage, and Disease. FASEB Journal, 2015, 29, 233.1.	0.2	0
65	Lipin-1 flexes its muscle in autophagy. Cell Cycle, 2014, 13, 3789-3790.	1.3	5
66	Regulation of bile acid homeostasis by the intestinal Diet1–FGF15/19 axis. Current Opinion in Lipidology, 2014, 25, 140-147.	1.2	17
67	The GPIHBP1–LPL Complex Is Responsible for the Margination of Triglyceride-Rich Lipoproteins in Capillaries. Cell Metabolism, 2014, 19, 849-860.	7.2	124
68	The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature, 2014, 510, 397-401.	13.7	485
69	Region specific mitochondrial impairment in mice with widespread overexpression of alpha-synuclein. Neurobiology of Disease, 2014, 70, 204-213.	2.1	87
70	Adaptive Thermogenesis in White Adipose Tissue: Is Lactate the New Brown(ing)?. Diabetes, 2014, 63, 3175-3176.	0.3	12
71	Lipin-1 Regulates Autophagy Clearance and Intersects with Statin Drug Effects in Skeletal Muscle. Cell Metabolism, 2014, 20, 267-279.	7.2	134
72	Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 535-546.	1.8	35

#	Article	IF	CITATIONS
73	Lipin-1 and lipin-3 together determine adiposity in vivo. Molecular Metabolism, 2014, 3, 145-154.	3.0	48
74	Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism. Cancer & Metabolism, 2014, 2, 21.	2.4	137
75	Diet1 Functions in the FGF15/19 Enterohepatic Signaling Axis to Modulate Bile Acid and Lipid Levels. Cell Metabolism, 2013, 17, 916-928.	7.2	60
76	The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor performance. Biology of Sex Differences, 2013, 4, 15.	1.8	31
77	Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Progress in Lipid Research, 2013, 52, 305-316.	5.3	109
78	Cellâ€autonomous sex determination outside of the gonad. Developmental Dynamics, 2013, 242, 371-379.	0.8	63
79	Adipose Subtype-Selective Recruitment of TLE3 or Prdm16 by PPARÎ ³ Specifies Lipid Storage versus Thermogenic Gene Programs. Cell Metabolism, 2013, 17, 423-435.	7.2	128
80	X and Y Chromosome Complement Influence Adiposity and Metabolism in Mice. Endocrinology, 2013, 154, 1092-1104.	1.4	89
81	Metabolic impact of sex chromosomes. Adipocyte, 2013, 2, 74-79.	1.3	86
82	The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice. PLoS Genetics, 2012, 8, e1002709.	1.5	247
83	Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2486-95.	3.3	73
84	Nuclear Envelope Phosphatase 1-Regulatory Subunit 1 (Formerly TMEM188) Is the Metazoan Spo7p Ortholog and Functions in the Lipin Activation Pathway. Journal of Biological Chemistry, 2012, 287, 3123-3137.	1.6	86
85	Lipin-1 Phosphatidic Phosphatase Activity Modulates Phosphatidate Levels to Promote Peroxisome Proliferator-activated Receptor γ (PPARγ) Gene Expression during Adipogenesis. Journal of Biological Chemistry, 2012, 287, 3485-3494.	1.6	68
86	Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mammalian Genome, 2012, 23, 680-692.	1.0	134
87	NF-E2–Related Factor 2 Promotes Atherosclerosis by Effects on Plasma Lipoproteins and Cholesterol Transport That Overshadow Antioxidant Protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 58-66.	1.1	146
88	Heart-type Fatty Acid-binding Protein Is Essential for Efficient Brown Adipose Tissue Fatty Acid Oxidation and Cold Tolerance. Journal of Biological Chemistry, 2011, 286, 380-390.	1.6	76
89	Insulin-stimulated Interaction with 14-3-3 Promotes Cytoplasmic Localization of Lipin-1 in Adipocytes. Journal of Biological Chemistry, 2010, 285, 3857-3864.	1.6	71
90	Lipins: Multifunctional Lipid Metabolism Proteins. Annual Review of Nutrition, 2010, 30, 257-272.	4.3	125

#	Article	IF	CITATIONS
91	Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E1195-E1209.	1.8	354
92	A Conserved Serine Residue Is Required for the Phosphatidate Phosphatase Activity but Not the Transcriptional Coactivator Functions of Lipin-1 and Lipin-2. Journal of Biological Chemistry, 2009, 284, 29968-29978.	1.6	115
93	Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models. Human Molecular Genetics, 2009, 18, 1006-1016.	1.4	108
94	The level and compartmentalization of phosphatidate phosphatase-1 (lipin-1) control the assembly and secretion of hepatic VLDL. Journal of Lipid Research, 2009, 50, 47-58.	2.0	85
95	Lipin proteins and metabolic homeostasis. Journal of Lipid Research, 2009, 50, S109-S114.	2.0	100
96	Resistance to Diet-Induced Obesity in Mice with Synthetic Glyoxylate Shunt. Cell Metabolism, 2009, 9, 525-536.	7.2	33
97	Phosphatidate degradation: Phosphatidate phosphatases (lipins) and lipid phosphate phosphatases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 956-961.	1.2	88
98	The lipin family: mutations and metabolism. Current Opinion in Lipidology, 2009, 20, 165-170.	1.2	104
99	The Role of Lipin Proteins in Lipid Storage and Metabolism. FASEB Journal, 2009, 23, 434.1.	0.2	0
100	Metabolic syndrome: from epidemiology to systems biology. Nature Reviews Genetics, 2008, 9, 819-830.	7.7	289
101	The lipin protein family: Dual roles in lipid biosynthesis and gene expression. FEBS Letters, 2008, 582, 90-96.	1.3	173
102	Thematic Review Series: Glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. Journal of Lipid Research, 2008, 49, 2493-2503.	2.0	170
103	Regulation of lipin-1 gene expression by glucocorticoids during adipogenesis*. Journal of Lipid Research, 2008, 49, 1519-1528.	2.0	80
104	Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6â^'/â^' mice. Journal of Lipid Research, 2008, 49, 823-831.	2.0	100
105	Glucocorticoids and cyclic AMP selectively increase hepatic lipin-1 expression, and insulin acts antagonistically. Journal of Lipid Research, 2008, 49, 1056-1067.	2.0	64
106	Adipose Tissue Lipin-1 Expression Is Correlated with Peroxisome Proliferator-Activated Receptor α Gene Expression and Insulin Sensitivity in Healthy Young Men. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 233-239.	1.8	62
107	Three Mammalian Lipins Act as Phosphatidate Phosphatases with Distinct Tissue Expression Patterns. Journal of Biological Chemistry, 2007, 282, 3450-3457.	1.6	316
108	Genetic Factors in Type 2 Diabetes: All in the (Lipin) Family. Diabetes, 2007, 56, 2842-2843.	0.3	12

#	Article	IF	CITATIONS
109	The Small Molecule Harmine Is an Antidiabetic Cell-Type-Specific Regulator of PPARÎ ³ Expression. Cell Metabolism, 2007, 5, 357-370.	7.2	180
110	The Role of Lipin 1 in Adipogenesis and Lipid Metabolism. Novartis Foundation Symposium, 2007, 286, 58-71.	1.2	17
111	Metabolic consequences of lipodystrophy in mouse models. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 436-441.	1.3	40
112	Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Human Molecular Genetics, 2006, 15, 377-386.	1.4	97
113	Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. Journal of Lipid Research, 2006, 47, 745-754.	2.0	105
114	Lipin: a determinant of adiposity, insulin sensitivity and energy balance. Future Lipidology, 2006, 1, 91-101.	0.5	7
115	Lipin Deficiency Impairs Diurnal Metabolic Fuel Switching. Diabetes, 2006, 55, 3429-3438.	0.3	36
116	Agpat6—a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. Journal of Lipid Research, 2006, 47, 734-744.	2.0	112
117	Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders Approaches to lipid metabolism gene identification and characterization in the postgenomic era. Journal of Lipid Research, 2006, 47, 1891-1907.	2.0	1
118	Lipin Expression Is Attenuated in Adipose Tissue of Insulin-Resistant Human Subjects and Increases With Peroxisome Proliferator-Activated Receptor Activation. Diabetes, 2006, 55, 2811-2818.	0.3	97
119	Alternatively Spliced Lipin Isoforms Exhibit Distinct Expression Pattern, Subcellular Localization, and Role in Adipogenesis. Journal of Biological Chemistry, 2005, 280, 32883-32889.	1.6	181
120	Lipin, a lipodystrophy and obesity gene. Cell Metabolism, 2005, 1, 73-83.	7.2	274
121	Biphasic expression of lipin suggests dual roles in adipocyte development. Drug News and Perspectives, 2005, 18, 13.	1.9	51
122	Lipin Expression Preceding Peroxisome Proliferator-activated Receptor-Î ³ Is Critical for Adipogenesis in Vivo and in Vitro. Journal of Biological Chemistry, 2004, 279, 29558-29564.	1.6	193
123	Characterizing Cholesterol Metabolism in Atherosclerosis Susceptible and Resistant Mouse Models Using DNA Microarrays. , 2004, , 195-213.		0
124	A cluster of eight hydroxysteroid dehydrogenase genes belonging to the aldo-keto reductase supergene family on mouse chromosome 13. Journal of Lipid Research, 2003, 44, 503-511.	2.0	47
125	Cholesterol and Cholate Components of an Atherogenic Diet Induce Distinct Stages of Hepatic Inflammatory Gene Expression. Journal of Biological Chemistry, 2003, 278, 42774-42784.	1.6	167
126	The Diet1 Locus Confers Protection against Hypercholesterolemia through Enhanced Bile Acid Metabolism. Journal of Biological Chemistry, 2002, 277, 469-477.	1.6	26

#	Article	IF	CITATIONS
127	<i>Accumulating evidence for differences during preadipocyte development</i> . Physiological Genomics, 2001, 7, 1-2.	1.0	0
128	Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nature Genetics, 2001, 27, 121-124.	9.4	526
129	Mouse models of lipodystrophy. Current Atherosclerosis Reports, 2000, 2, 390-396.	2.0	30
130	Low level expression of hormone-sensitive lipase in arterial macrophage-derived foam cells: potential explanation for low rates of cholesteryl ester hydrolysis. Atherosclerosis, 2000, 149, 343-350.	0.4	22
131	Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. Journal of Lipid Research, 2000, 41, 1067-1076.	2.0	154
132	A locus conferring resistance to diet-induced hypercholesterolemia and atherosclerosis on mouse chromosome 2. Journal of Lipid Research, 2000, 41, 573-582.	2.0	21
133	Preparation of YAC End Fragments from the Whitehead/MIT Mouse YAC Library pRML Vectors. BioTechniques, 1999, 26, 396-402.	0.8	0
134	Altered Gene Expression Pattern in the Fatty Liver Dystrophy Mouse Reveals Impaired Insulin-mediated Cytoskeleton Dynamics. Journal of Biological Chemistry, 1999, 274, 23078-23084.	1.6	29
135	Genetic, Physical, and Transcript Map of the fld Region on Mouse Chromosome 12. Genomics, 1999, 62, 436-444.	1.3	17
136	Hormone-Sensitive Lipase Overexpression Increases Cholesteryl Ester Hydrolysis in Macrophage Foam Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 991-998.	1.1	60
137	mRNA Quantitation Techniques: Considerations for Experimental Design and Application. Journal of Nutrition, 1998, 128, 2038-2044.	1.3	41
138	The fatty liver dystrophy mutant mouse: microvesicular steatosis associated with altered expression levels of peroxisome proliferator-regulated proteins. Journal of Lipid Research, 1998, 39, 2209-2217.	2.0	30
139	Evidence for Hormone-Sensitive Lipase mRNA Expression in Human Monocyte/Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 3428-3432.	1.1	41
140	Localization of profilin-1 (Pfn1) and a related sequence (Pfn1-rs) to mouse Chromosomes 11 and 15 respectively. Mammalian Genome, 1997, 8, 539-540.	1.0	0
141	Localization of ubiquitin gene family members to mouse Chromosomes 5, 11, and 18. Mammalian Genome, 1997, 8, 789-790.	1.0	1